85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Charged-state dynamics in Kelvin probe force microscopy

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a numerical model which allows us to study the Kelvin force probe microscopy response to the charge switching in quantum dots at various time scales. The model provides more insight into the behavior of frequency shift and dissipated energy under different scanning conditions measuring a temporarily charged quantum dot on surface. Namely, we analyze the dependence of the frequency shift, its fluctuation and of the dissipated energy, on the resonance frequency of tip and electron tunneling rates between tip - quantum dot and quantum dot - sample. We discuss two complementary approaches to simulating the charge dynamics, a stochastic and a deterministic one. In addition, we derive analytic formulas valid for small amplitudes, describing relations between the frequency shift, dissipated energy, and the characteristic rates driving the charging and discharging processes.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Atomic resolution of the silicon (111)-(7x7) surface by atomic force microscopy.

          Achieving high resolution under ultrahigh-vacuum conditions with the force microscope can be difficult for reactive surfaces, where the interaction forces between the tip and the samples can be relatively large. A force detection scheme that makes use of a modified cantilever beam and senses the force gradient through frequency modulation is described. The reconstructed silicon (111)-(7x7) surface was imaged in a noncontact mode by force microscopy with atomic resolution (6 angstroms lateral, 0.1 angstrom vertical).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical identification of individual surface atoms by atomic force microscopy.

            Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules and of the electronic properties of magnetic impurity atoms, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution, by detecting and precisely measuring the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of fast electron spin relaxation times with atomic resolution.

              Single spins in solid-state systems are often considered prime candidates for the storage of quantum information, and their interaction with the environment the main limiting factor for the realization of such schemes. The lifetime of an excited spin state is a sensitive measure of this interaction, but extending the spatial resolution of spin relaxation measurements to the atomic scale has been a challenge. We show how a scanning tunneling microscope can measure electron spin relaxation times of individual atoms adsorbed on a surface using an all-electronic pump-probe measurement scheme. The spin relaxation times of individual Fe-Cu dimers were found to vary between 50 and 250 nanoseconds. Our method can in principle be generalized to monitor the temporal evolution of other dynamical systems.
                Bookmark

                Author and article information

                Journal
                1601.07292

                Nanophysics
                Nanophysics

                Comments

                Comment on this article