23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dynamical network model for age-related health deficits and mortality

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How long people live depends on their health, and how it changes with age. Individual health can be tracked by the accumulation of age-related health deficits. The fraction of age-related deficits is a simple quantitative measure of human aging. This quantitative frailty index (F) is as good as chronological age in predicting mortality. In this paper, we use a dynamical network model of deficits to explore the effects of interactions between deficits, deficit damage and repair processes, and the connection between the F and mortality. With our model, we qualitatively reproduce Gompertz's law of increasing human mortality with age, the broadening of the F distribution with age, the characteristic nonlinear increase of the F with age, and the increased mortality of high-frailty individuals. No explicit time-dependence in damage or repair rates is needed in our model. Instead, implicit time-dependence arises through deficit interactions-so that the average deficit damage rates increase, and deficit repair rates decrease, with age. We use a simple mortality criterion, where mortality occurs when the most connected node is damaged.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          The reliability theory of aging and longevity.

          Reliability theory is a general theory about systems failure. It allows researchers to predict the age-related failure kinetics for a system of given architecture (reliability structure) and given reliability of its components. Reliability theory predicts that even those systems that are entirely composed of non-aging elements (with a constant failure rate) will nevertheless deteriorate (fail more often) with age, if these systems are redundant in irreplaceable elements. Aging, therefore, is a direct consequence of systems redundancy. Reliability theory also predicts the late-life mortality deceleration with subsequent leveling-off, as well as the late-life mortality plateaus, as an inevitable consequence of redundancy exhaustion at extreme old ages. The theory explains why mortality rates increase exponentially with age (the Gompertz law) in many species, by taking into account the initial flaws (defects) in newly formed systems. It also explains why organisms "prefer" to die according to the Gompertz law, while technical devices usually fail according to the Weibull (power) law. Theoretical conditions are specified when organisms die according to the Weibull law: organisms should be relatively free of initial flaws and defects. The theory makes it possible to find a general failure law applicable to all adult and extreme old ages, where the Gompertz and the Weibull laws are just special cases of this more general failure law. The theory explains why relative differences in mortality rates of compared populations (within a given species) vanish with age, and mortality convergence is observed due to the exhaustion of initial differences in redundancy levels. Overall, reliability theory has an amazing predictive and explanatory power with a few, very general and realistic assumptions. Therefore, reliability theory seems to be a promising approach for developing a comprehensive theory of aging and longevity integrating mathematical methods with specific biological knowledge. Copyright 2001 Academic Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

            Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic wound repair and healing in older adults: current status and future research.

              Older adults are more likely to have chronic wounds than younger people, and the effect of chronic wounds on quality of life is particularly profound in this population. Wound healing slows with age, but the basic biology underlying chronic wounds and the influence of age-associated changes on wound healing are poorly understood. Most studies have used in vitro approaches and various animal models, but observed changes translate poorly to human healing conditions. The effect of age and accompanying multimorbidity on the effectiveness of existing and emerging treatment approaches for chronic wounds is also unknown, and older adults tend to be excluded from randomized clinical trials. Poorly defined outcomes and variables; lack of standardization in data collection; and variations in the definition, measurement, and treatment of wounds also hamper clinical studies. The Association of Specialty Professors, in conjunction with the National Institute on Aging and the Wound Healing Society, held a workshop, summarized in this article, to explore the current state of knowledge and research challenges, engage investigators across disciplines, and identify research questions to guide future study of age-associated changes in chronic wound healing.
                Bookmark

                Author and article information

                Journal
                PLEEE8
                Physical Review E
                Phys. Rev. E
                American Physical Society (APS)
                2470-0045
                2470-0053
                February 2016
                February 29 2016
                : 93
                : 2
                Article
                10.1103/PhysRevE.93.022309
                26986354
                f703bb40-7468-4248-81f1-862e5db46a8e
                © 2016

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article