17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of a Relay in Bursty Multiple Access Channels

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigate the role of a relay in multiple access channels (MACs) with bursty user traffic, where intermittent data traffic restricts the users to bursty transmissions. As our main result, we characterize the degrees of freedom (DoF) region of a \(K\)-user bursty multi-input multi-output (MIMO) Gaussian MAC with a relay, where Bernoulli random states are introduced to govern bursty user transmissions. To that end, we extend the noisy network coding scheme to achieve the cut-set bound. Our main contribution is in exploring the role of a relay from various perspectives. First, we show that a relay can provide a DoF gain in bursty channels, unlike in conventional non-bursty channels. Interestingly, we find that the relaying gain can scale with additional antennas at the relay to some extent. Moreover, observing that a relay can help achieve collision-free performances, we establish the necessary and sufficient condition for attaining collision-free DoF. Lastly, we consider scenarios in which some physical perturbation shared around the users may generate data traffic simultaneously, causing transmission patterns across them to be correlated. We demonstrate that for most cases in such scenarios, the relaying gain is greater when the users' transmission patterns are more correlated, hence when more severe collisions take place. Our results have practical implications in various scenarios of wireless networks such as device-to-device systems and random media access control protocols.

          Related collections

          Author and article information

          Journal
          2016-04-17
          Article
          1604.04961
          f706b873-1a06-46c9-953e-606b30ac9543

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          26 pages, 13 figures, submitted to the IEEE Transactions on Information Theory
          cs.IT math.IT

          Numerical methods,Information systems & theory
          Numerical methods, Information systems & theory

          Comments

          Comment on this article