40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Application of vibrational spectroscopy to the study of mineralized tissues (review).

      Journal of Biomedical Optics
      Aging, metabolism, Bone and Bones, chemistry, Collagen, analysis, Durapatite, Humans, Image Processing, Computer-Assisted, Spectroscopy, Near-Infrared, methods, Spectrum Analysis, Raman, Tooth

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The infrared and Raman spectroscopy of bone and teeth tissues are reviewed. Characteristic spectra are obtained for both the mineral and protein components of these tissues. Vibrational spectroscopy is used to study the mineralization process, to define the chemical structure changes accompanying bone diseases, and to characterize interactions between prosthetic implants and tissues. Microspectroscopy allows acquisition of spatially resolved spectra, with micron scale resolution. Recently developed imaging modalities allow tissue imaging with chemical composition contrast.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites.

          The carbonate and phosphate vibrational modes of different synthetic and biological carbonated apatites were investigated by Raman microspectroscopy, and compared with those of hydroxyapatite. The nu1 phosphate band at 960 cm-1 shifts slightly due to carbonate substitution in both A and B sites. The spectrum of type A carbonated apatite exhibits two nu1 PO43- bands at 947 and 957 cm-1. No significant change was observed in the nu2 and nu4 phosphate mode regions in any carbonated samples. The nu3 PO43- region seems to be more affected by carbonation: two main bands were observed, as in the hydroxyapatite spectrum, but at lower wave numbers. The phosphate spectra of all biominerals apatite were consistent with type AB carbonated apatite. In the enamel spectrum, bands were observed at 3513 and at 3573 cm-1 presumably due to two different hydroxyl environments. Two different bands due to the carbonate nu1 mode were identified depending on the carbonate substitution site A or B, at 1107 and 1070 cm-1, respectively. Our results, compared with the infrared data already reported, suggest that even low levels of carbonate substitution induce modifications of the hydroxyapatite spectrum. Increasing substitution ratios, however, do not bring about any further alteration. The spectra of dentine and bone showed a strong similarity at a micrometric level. This study demonstrates the existence of acidic phosphate, observable by Raman microspectrometry, in mature biominerals. The HPO42- and CO32- contents increase from enamel to dentine and bone, however, these two phenomena do not seem to be correlated.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The carbonate environment in bone mineral: a resolution-enhanced Fourier Transform Infrared Spectroscopy Study.

            The environment of carbonate ions in bones of different species (rat, rabbit, chicken, cow, human) was investigated by Fourier Transform Infrared Spectroscopy (FTIR) associated with a self-deconvolution technique. The carbonate bands in the v2 CO3(2-) domain show three components which were identified by using synthetic standards and different properties of the apatitic structure (ionic affinity for crystallographic locations, ionic exchange). The major component at 871 cm-1 is due to carbonate ions located in PO4(3-) sites (type B carbonate). A band at 878 cm-1 was exclusively assigned to carbonate ions substituting for OH-ions in the apatitic structure (type A carbonate). A band at 866 cm-1 not previously observed was shown to correspond to a labile carbonate environment. The intensity ratio of type A to type B carbonate appears remarkably constant in all bone samples. The 866 cm-1 carbonate band varies in its relative intensity in different species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fourier transform infrared microspectroscopic analysis of bones of osteocalcin-deficient mice provides insight into the function of osteocalcin.

              Osteocalcin, the gamma-carboxyglutamic acid-containing protein, which in most species is the predominant noncollagenous protein of bone and dentin, has been postulated to play roles in bone formation and remodeling. Recently, genetic studies showed that osteocalcin acts as an inhibitor of osteoblast function. Based on von Kossa staining and measurement of mineral apposition rates in tetracycline-labeled bones, osteocalcin knockout animals were reported to have no detectable alterations in bone mineralization. To test the hypothesis that, in addition to regulating osteoblastic activity, osteocalcin is involved in regulating mineral properties, a more sensitive assay of mineralization, Fourier transform infrared microspectroscopy (FT-IRM) was used to study thin sections of femora of 4-week-, 6-month- (intact and ovariectomized), and 9-month-old wild-type and osteocalcin-knockout mice. FT-IRM spectra provided spatially resolved measures of relative mineral and carbonate contents, and parameters indicative of apatite crystal size and perfection. No differences were detected in the mineral properties of the 4-week-old knockout and wild-type mice indicating that the mineralization process was not altered at this time point. Six-month-old wild-type animals had higher mineral contents (mineral:matrix ratios) in cortical as compared with trabecular bones; mineral contents in knockout and wild-type bones were not different. At each age studied, carbonate:phosphate ratios tended to be greater in the wild-type as compared with knockout animals. Detailed analysis of the phosphate nu1,nu3 vibrations in the spectra from 6-month-old wild-type animals indicated that the crystals were larger/more perfect in the cortical as opposed to the trabecular bones. In contrast, in the knockout animals' bones at 6 months, there were no differences between trabecular and cortical bone in terms of carbonate content or crystallite size and perfection. Spectral parameters of the cortical and trabecular bone of the knockout animals resembled those in the wild-type trabecular bone and differed from wild-type cortical bone. In ovariectomized 6-month-old animals, the mineral content (mineral:matrix ratio) in the wild-type cortices increased from periosteum to endosteum, whereas, in the knockout animals' bones, the mineral:matrix ratio was constant. Ovariectomized knockout cortices had lower carbonate:phosphate ratios than wild-type, and crystallite size and perfection resembled that in wild-type trabeculae, and did not increase from periosteum to endosteum. These spatially resolved data provide evidence that osteocalcin is required to stimulate bone mineral maturation.
                Bookmark

                Author and article information

                Comments

                Comment on this article