6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Targeting the Erythrocytic and Liver Stages of Malaria Parasites withs-Triazine-Based Hybrids

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The silent path to thousands of merozoites: the Plasmodium liver stage.

          Plasmodium sporozoites are deposited in the skin of their vertebrate hosts through the bite of an infected female Anopheles mosquito. Most of these parasites find a blood vessel and travel in the peripheral blood circulation until they reach the liver sinusoids. Once there, the sporozoites cross the sinusoidal wall and migrate through several hepatocytes before they infect a final hepatocyte, with the formation of a parasitophorous vacuole, in which the intrahepatic form of the parasite grows and multiplies. During this period, each sporozoite generates thousands of merozoites. As the development of Plasmodium sporozoites inside hepatocytes is an obligatory step before the onset of disease, understanding the parasite's requirements during this period is crucial for the development of any form of early intervention. This Review summarizes our current knowledge on this stage of the Plasmodium life cycle.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Molecular Mechanism of Action of Artemisinin—The Debate Continues

            Despite international efforts to ‘roll back malaria’ the 2008 World Malaria Report revealed the disease still affects approximately 3 billion people in 109 countries; 45 within the WHO African region. The latest report however does provide some ‘cautious optimism’; more than one third of malarious countries have documented greater than 50% reductions in malaria cases in 2008 compared to 2000. The goal of the Member States at the World Health Assembly and ‘Roll Back Malaria’ (RBM) partnership is to reduce the numbers of malaria cases and deaths recorded in 2000 by 50% or more by the end of 2010. Although malaria is preventable it is most prevalent in poorer countries where prevention is difficult and prophylaxis is generally not an option. The burden of disease has increased by the emergence of multi drug resistant (MDR) parasites which threatens the use of established and cost effective antimalarial agents. After a major change in treatment policies, artemisinins are now the frontline treatment to aid rapid clearance of parasitaemia and quick resolution of symptoms. Since artemisinin and its derivatives are eliminated rapidly, artemisinin combination therapies (ACT’s) are now recommended to delay resistance mechanisms. In spite of these precautionary measures reduced susceptibility of parasites to the artemisinin-based component of ACT’s has developed at the Thai-Cambodian border, a historical ‘hot spot’ for MDR parasite evolution and emergence. This development raises serious concerns for the future of the artemsinins and this is not helped by controversy related to the mode of action. Although a number of potential targets have been proposed the actual mechanism of action remains ambiguous. Interestingly, artemisinins have also shown potent and broad anticancer properties in cell lines and animal models and are becoming established as anti-schistosomal agents. In this review we will discuss the recent evidence explaining bioactivation and potential molecular targets in the chemotherapy of malaria and cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hybrid molecules with a dual mode of action: dream or reality?

              The drug market is still dominated by small molecules, and more than 80% of the clinical development of drug candidates in the top 20 pharmaceutical firms is still based on small molecules. The high cost of developing and manufacturing "biological drugs" will contribute to leaving an open space for drugs based on cheap small molecules. Four main routes can be explored to design affordable and efficient drugs: (i) a drastic reduction of the production costs of biological drugs, (ii) a real improvement of drug discovery via "computer-assisted combinatorial methods", (iii) going back to an extensive exploration of natural products as drug sources, and (iv) drug discovery by rational drug design and bio-inspired design that hopefully includes serendipity and human inspiration. At the border between bio-inspired design and rational design, one can imagine preparation of hybrid molecules with a dual mode of action to create efficient new drugs. In this Account, hybrid molecules are defined as chemical entities with two or more structural domains having different biological functions and dual activity, indicating that a hybrid molecule acts as two distinct pharmacophores. In order to obtain new antimalarial drugs that are affordable and able to avoid the emergence of resistant strains, we developed hybrid molecules with a dual mode of action (a "double-edged sword") able to kill multiresistant strains by oral administration. These hybrid molecules, named trioxaquines, with two pharmacophores able to interact with the heme target are made with a trioxane motif covalently linked to an aminoquinoline entity. More than 100 trioxaquines have been prepared by Palumed over a period of 4 years, and in collaboration with Sanofi-Aventis, the trioxaquine PA1103-SAR116242 has been selected in January 2007 as candidate for preclinical development.
                Bookmark

                Author and article information

                Journal
                ChemMedChem
                ChemMedChem
                Wiley-Blackwell
                18607179
                May 2015
                May 17 2015
                : 10
                : 5
                : 883-890
                Article
                10.1002/cmdc.201500011
                f7237f65-9a6a-4628-bf5b-1fbe4da0af14
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article