19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      New Insights into the Roles of Monocytes/Macrophages in Cardiovascular Calcification Associated with Chronic Kidney Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular disease (CVD) is an important cause of death in patients with chronic kidney disease (CKD), and cardiovascular calcification (CVC) is one of the strongest predictors of CVD in this population. Cardiovascular calcification results from complex cellular interactions involving the endothelium, vascular/valvular cells (i.e., vascular smooth muscle cells, valvular interstitial cells and resident fibroblasts), and monocyte-derived macrophages. Indeed, the production of pro-inflammatory cytokines and oxidative stress by monocyte-derived macrophages is responsible for the osteogenic transformation and mineralization of vascular/valvular cells. However, monocytes/macrophages show the ability to modify their phenotype, and consequently their functions, when facing environmental modifications. This plasticity complicates efforts to understand the pathogenesis of CVC—particularly in a CKD setting, where both uraemic toxins and CKD treatment may affect monocyte/macrophage functions and thereby influence CVC. Here, we review (i) the mechanisms by which each monocyte/macrophage subset either promotes or prevents CVC, and (ii) how both uraemic toxins and CKD therapies might affect these monocyte/macrophage functions.

          Related collections

          Most cited references169

          • Record: found
          • Abstract: found
          • Article: not found

          Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

          As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous

            Given the importance of monocytes in pathogenesis of infectious and other inflammatory disorders, delineating functional and phenotypic characterization of monocyte subsets has emerged as a critical requirement. Although human monocytes have been subdivided into three different populations based on surface expression of CD14 and CD16, published reports suffer from contradictions with respect to subset phenotypes and function. This has been attributed to discrepancies in reliable gating strategies for flow cytometric characterization and purification protocols contributing to significant changes in receptor expression. By using a combination of multicolour flow cytometry and a high-dimensional automated clustering algorithm to confirm robustness of gating strategy and analysis of ex-vivo activation of whole blood with LPS we demonstrate the following: a. ‘Classical’ monocytes are phagocytic with no inflammatory attributes, b. ‘Non-classical’ subtype display ‘inflammatory’ characteristics on activation and display properties for antigen presentation and c. ‘Intermediate’ subtype that constitutes a very small percentage in circulation (under physiological conditions) appear to be transitional monocytes that display both phagocytic and inflammatory function. Analysis of blood from patients with Sepsis, a pathogen driven acute inflammatory disease and Systemic Lupus Erythmatosus (SLE), a chronic inflammatory disorder validated the broad conclusions drawn in the study.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography.

              The aim of this study was to analyze the yet ill-defined relationship of distinct human monocyte subsets with cardiovascular outcomes in a broad patient population at cardiovascular risk. Monocytes, the most abundant immune cell type found in atherosclerotic plaques, are crucial promoters of atherogenesis. Three distinct human monocyte subsets exist: classical CD14++CD16-, intermediate CD14++CD16+, and nonclassical CD14+CD16++ monocytes. Immunomodulation of distinct monocyte subsets has recently been discussed as a new therapeutic avenue in atherosclerosis. Cardiovascular events in 951 subjects referred for elective coronary angiography were prospectively analyzed. Monocyte subset analysis was performed using flow cytometry, blinded to patients' clinical characteristics, and patients were categorized according to quartiles of total monocyte and monocyte subset counts. The primary endpoint was defined a priori as the first occurrence of cardiovascular death, acute myocardial infarction, or nonhemorrhagic stroke. Endpoint adjudication was done blinded to monocyte subset distribution. During a mean follow-up period of 2.6 ± 1.0 years, 93 patients experienced the primary endpoint. In univariate Kaplan-Meier analysis, counts of total (p = 0.010), classical CD14++CD16- (p = 0.024), and intermediate CD14++CD16+ (p < 0.001) monocytes predicted the primary endpoint, whereas nonclassical monocytes did not (p = 0.158). After full adjustment for confounders, CD14++CD16+ monocytes remained the only monocyte subset independently related to cardiovascular events (fourth vs. first quartile: hazard ratio: 3.019; 95% confidence interval: 1.315 to 6.928; p = 0.009). CD14++CD16+ monocytes independently predicted cardiovascular events in subjects referred for elective coronary angiography. Future studies will be needed to elucidate whether CD14++CD16+ monocytes may become a target cell population for new therapeutic strategies in atherosclerosis. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Toxins (Basel)
                Toxins (Basel)
                toxins
                Toxins
                MDPI
                2072-6651
                12 September 2019
                September 2019
                : 11
                : 9
                : 529
                Affiliations
                [1 ]EA 7517 MP3CV, CURS, F-80054 Amiens, France; alexandre.candellier@ 123456gmail.com (A.C.); cedric.boudot@ 123456u-picardie.fr (C.B.); grissimaria@ 123456gmail.com (M.G.); romuald.mentaverri@ 123456u-picardie.fr (R.M.); choukroun.gabriel@ 123456chu-amiens.fr (G.C.); michel.brazier@ 123456u-picardie.fr (M.B.);
                [2 ]Faculty of Medicine, University of Picardie Jules Verne, F-80000 Amiens, France
                [3 ]Division of Nephrology, Amiens-Picardie University Hospital, F-80054 Amiens, France
                [4 ]Department of Biochemistry, Amiens-Picardie University Hospital, F-80054 Amiens, France
                [5 ]Faculty of Pharmacy, University of Picardie Jules Verne, F-80000 Amiens, France
                [6 ]Division of Nephrology, Ambroise Paré University Hospital, APHP, F-92104 Boulogne-Billancourt, France
                [7 ]Inserm U1018—Team 5, CESP, UVSQ, University Paris-Saclay, F-94807 Villejuif, France
                Author notes
                Article
                toxins-11-00529
                10.3390/toxins11090529
                6784181
                31547340
                f72d17fc-5a08-4cb7-8e87-9a81f562e697
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 July 2019
                : 09 September 2019
                Categories
                Review

                Molecular medicine
                cardiovascular calcification,chronic kidney disease,macrophages,monocytes,uraemic toxins

                Comments

                Comment on this article