14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      3D printing of inherently nanoporous polymers via polymerization-induced phase separation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.

          Abstract

          3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Polymers for 3D Printing and Customized Additive Manufacturing

          Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting. The range of polymers used in AM encompasses thermoplastics, thermosets, elastomers, hydrogels, functional polymers, polymer blends, composites, and biological systems. Aspects of polymer design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed. Selected applications demonstrate how polymer-based AM is being exploited in lightweight engineering, architecture, food processing, optics, energy technology, dentistry, drug delivery, and personalized medicine. Unparalleled by metals and ceramics, polymer-based AM plays a key role in the emerging AM of advanced multifunctional and multimaterial systems including living biological systems as well as life-like synthetic systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Additive manufacturing. Continuous liquid interface production of 3D objects.

            Additive manufacturing processes such as 3D printing use time-consuming, stepwise layer-by-layer approaches to object fabrication. We demonstrate the continuous generation of monolithic polymeric parts up to tens of centimeters in size with feature resolution below 100 micrometers. Continuous liquid interface production is achieved with an oxygen-permeable window below the ultraviolet image projection plane, which creates a "dead zone" (persistent liquid interface) where photopolymerization is inhibited between the window and the polymerizing part. We delineate critical control parameters and show that complex solid parts can be drawn out of the resin at rates of hundreds of millimeters per hour. These print speeds allow parts to be produced in minutes instead of hours.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Self-assembly at all scales.

              Self-assembly is the autonomous organization of components into patterns or structures without human intervention. Self-assembling processes are common throughout nature and technology. They involve components from the molecular (crystals) to the planetary (weather systems) scale and many different kinds of interactions. The concept of self-assembly is used increasingly in many disciplines, with a different flavor and emphasis in each.
                Bookmark

                Author and article information

                Contributors
                levkin@kit.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                11 January 2021
                11 January 2021
                2021
                : 12
                : 247
                Affiliations
                [1 ]GRID grid.7892.4, ISNI 0000 0001 0075 5874, Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology, ; 76344 Eggenstein-Leopoldshafen, Germany
                [2 ]GRID grid.7892.4, ISNI 0000 0001 0075 5874, Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology, ; 76131 Karlsruhe, Germany
                [3 ]GRID grid.7892.4, ISNI 0000 0001 0075 5874, Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, ; 76344 Eggenstein-Leopoldshafen, Germany
                [4 ]GRID grid.7892.4, ISNI 0000 0001 0075 5874, Institute of Nanotechnology and Institute of Applied Physics, Karlsruhe Institute of Technology, ; 76128 Karlsruhe, Germany
                Author information
                http://orcid.org/0000-0003-3589-5433
                http://orcid.org/0000-0002-2843-3604
                Article
                20498
                10.1038/s41467-020-20498-1
                7801408
                33431911
                f72e71ca-344a-41c5-9697-448f9f60803e
                © The Author(s) 2021

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 April 2020
                : 1 December 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2021

                Uncategorized
                biomaterials - cells,polymers,design, synthesis and processing
                Uncategorized
                biomaterials - cells, polymers, design, synthesis and processing

                Comments

                Comment on this article