13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Death after discharge: prognostic model of 1-year mortality in traumatic brain injury patients undergoing decompressive craniectomy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Despite advances in decompressive craniectomy (DC) for the treatment of traumatic brain injury (TBI), these patients are at risk of having a poor long-term prognosis. The aim of this study was to predict 1-year mortality in TBI patients undergoing DC using logistic regression and random tree models.

          Methods

          This was a retrospective analysis of TBI patients undergoing DC from January 1, 2015, to April 25, 2019. Patient demographic characteristics, biochemical tests, and intraoperative factors were collected. One-year mortality prognostic models were developed using multivariate logistic regression and random tree algorithms. The overall accuracy, sensitivity, specificity, and area under the receiver operating characteristic curves (AUCs) were used to evaluate model performance.

          Results

          Of the 230 patients, 70 (30.4%) died within 1 year. Older age (OR, 1.066; 95% CI, 1.045–1.087; P < 0.001), higher Glasgow Coma Score (GCS) (OR, 0.737; 95% CI, 0.660–0.824; P < 0.001), higher d-dimer (OR, 1.005; 95% CI, 1.001–1.009; P = 0.015), coagulopathy (OR, 2.965; 95% CI, 1.808–4.864; P < 0.001), hypotension (OR, 3.862; 95% CI, 2.176–6.855; P < 0.001), and completely effaced basal cisterns (OR, 3.766; 95% CI, 2.255–6.290; P < 0.001) were independent predictors of 1-year mortality. Random forest demonstrated better performance for 1-year mortality prediction, which achieved an overall accuracy of 0.810, sensitivity of 0.833, specificity of 0.800, and AUC of 0.830 on the testing data compared to the logistic regression model.

          Conclusions

          The random forest model showed relatively good predictive performance for 1-year mortality in TBI patients undergoing DC. Further external tests are required to verify our prognostic model.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Decompressive craniectomy in diffuse traumatic brain injury.

          It is unclear whether decompressive craniectomy improves the functional outcome in patients with severe traumatic brain injury and refractory raised intracranial pressure. From December 2002 through April 2010, we randomly assigned 155 adults with severe diffuse traumatic brain injury and intracranial hypertension that was refractory to first-tier therapies to undergo either bifrontotemporoparietal decompressive craniectomy or standard care. The original primary outcome was an unfavorable outcome (a composite of death, vegetative state, or severe disability), as evaluated on the Extended Glasgow Outcome Scale 6 months after the injury. The final primary outcome was the score on the Extended Glasgow Outcome Scale at 6 months. Patients in the craniectomy group, as compared with those in the standard-care group, had less time with intracranial pressures above the treatment threshold (P<0.001), fewer interventions for increased intracranial pressure (P<0.02 for all comparisons), and fewer days in the intensive care unit (ICU) (P<0.001). However, patients undergoing craniectomy had worse scores on the Extended Glasgow Outcome Scale than those receiving standard care (odds ratio for a worse score in the craniectomy group, 1.84; 95% confidence interval [CI], 1.05 to 3.24; P=0.03) and a greater risk of an unfavorable outcome (odds ratio, 2.21; 95% CI, 1.14 to 4.26; P=0.02). Rates of death at 6 months were similar in the craniectomy group (19%) and the standard-care group (18%). In adults with severe diffuse traumatic brain injury and refractory intracranial hypertension, early bifrontotemporoparietal decompressive craniectomy decreased intracranial pressure and the length of stay in the ICU but was associated with more unfavorable outcomes. (Funded by the National Health and Medical Research Council of Australia and others; DECRA Australian Clinical Trials Registry number, ACTRN012605000009617.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension.

            Background The effect of decompressive craniectomy on clinical outcomes in patients with refractory traumatic intracranial hypertension remains unclear. Methods From 2004 through 2014, we randomly assigned 408 patients, 10 to 65 years of age, with traumatic brain injury and refractory elevated intracranial pressure (>25 mm Hg) to undergo decompressive craniectomy or receive ongoing medical care. The primary outcome was the rating on the Extended Glasgow Outcome Scale (GOS-E) (an 8-point scale, ranging from death to "upper good recovery" [no injury-related problems]) at 6 months. The primary-outcome measure was analyzed with an ordinal method based on the proportional-odds model. If the model was rejected, that would indicate a significant difference in the GOS-E distribution, and results would be reported descriptively. Results The GOS-E distribution differed between the two groups (P<0.001). The proportional-odds assumption was rejected, and therefore results are reported descriptively. At 6 months, the GOS-E distributions were as follows: death, 26.9% among 201 patients in the surgical group versus 48.9% among 188 patients in the medical group; vegetative state, 8.5% versus 2.1%; lower severe disability (dependent on others for care), 21.9% versus 14.4%; upper severe disability (independent at home), 15.4% versus 8.0%; moderate disability, 23.4% versus 19.7%; and good recovery, 4.0% versus 6.9%. At 12 months, the GOS-E distributions were as follows: death, 30.4% among 194 surgical patients versus 52.0% among 179 medical patients; vegetative state, 6.2% versus 1.7%; lower severe disability, 18.0% versus 14.0%; upper severe disability, 13.4% versus 3.9%; moderate disability, 22.2% versus 20.1%; and good recovery, 9.8% versus 8.4%. Surgical patients had fewer hours than medical patients with intracranial pressure above 25 mm Hg after randomization (median, 5.0 vs. 17.0 hours; P<0.001) but had a higher rate of adverse events (16.3% vs. 9.2%, P=0.03). Conclusions At 6 months, decompressive craniectomy in patients with traumatic brain injury and refractory intracranial hypertension resulted in lower mortality and higher rates of vegetative state, lower severe disability, and upper severe disability than medical care. The rates of moderate disability and good recovery were similar in the two groups. (Funded by the Medical Research Council and others; RESCUEicp Current Controlled Trials number, ISRCTN66202560 .).
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations.

                Bookmark

                Author and article information

                Contributors
                wenxingcui@qq.com
                gesn8561@fmmu.edu.cn
                2011913454@qq.com
                2645302700@qq.com
                617764726@qq.com
                lhxiao@fmmu.edu.cn
                zhugang.0308@163.com
                guohao0622@163.com
                dayunfmmu@163.com
                yanqu0123@fmmu.edu.cn
                Journal
                Chin Neurosurg J
                Chin Neurosurg J
                Chinese Neurosurgical Journal
                BioMed Central (London )
                2095-9370
                2057-4967
                21 April 2021
                21 April 2021
                2021
                : 7
                : 24
                Affiliations
                GRID grid.460007.5, ISNI 0000 0004 1791 6584, Department of Neurosurgery, , Tangdu Hospital, ; No. 569 Xin Si Road, Xi’an, 710038 Shaanxi Province China
                Article
                242
                10.1186/s41016-021-00242-4
                8058982
                f741e076-02a2-4865-a3c7-f79f5cddc405
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 2 September 2020
                : 31 March 2021
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81630027
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2021

                decompressive craniectomy,traumatic brain injury,one-year mortality,prognostic model,random forest

                Comments

                Comment on this article