39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Focal adhesions, stress fibers and mechanical tension

      research-article
      a , b
      Experimental cell research
      Myosin II, RhoA, Integrins, Substratum rigidity

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stress fibers and focal adhesions are complex protein arrays that produce, transmit and sense mechanical tension. Evidence accumulated over many years led to the conclusion that mechanical tension generated within stress fibers contributes to the assembly of both stress fibers themselves and their associated focal adhesions. However, several lines of evidence have recently been presented against this model. Here we discuss the evidence for and against the role of mechanical tension in driving the assembly of these structures. We also consider how their assembly is influenced by the rigidity of the substratum to which cells are adhering. Finally, we discuss the recently identified connections between stress fibers and the nucleus, and the roles that these may play, both in cell migration and regulating nuclear function.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Tensional homeostasis and the malignant phenotype.

          Tumors are stiffer than normal tissue, and tumors have altered integrins. Because integrins are mechanotransducers that regulate cell fate, we asked whether tissue stiffness could promote malignant behavior by modulating integrins. We found that tumors are rigid because they have a stiff stroma and elevated Rho-dependent cytoskeletal tension that drives focal adhesions, disrupts adherens junctions, perturbs tissue polarity, enhances growth, and hinders lumen formation. Matrix stiffness perturbs epithelial morphogenesis by clustering integrins to enhance ERK activation and increase ROCK-generated contractility and focal adhesions. Contractile, EGF-transformed epithelia with elevated ERK and Rho activity could be phenotypically reverted to tissues lacking focal adhesions if Rho-generated contractility or ERK activity was decreased. Thus, ERK and Rho constitute part of an integrated mechanoregulatory circuit linking matrix stiffness to cytoskeletal tension through integrins to regulate tissue phenotype.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly.

            Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell locomotion and focal adhesions are regulated by substrate flexibility.

              Responses of cells to mechanical properties of the adhesion substrate were examined by culturing normal rat kidney epithelial and 3T3 fibroblastic cells on a collagen-coated polyacrylamide substrate that allows the flexibility to be varied while maintaining a constant chemical environment. Compared with cells on rigid substrates, those on flexible substrates showed reduced spreading and increased rates of motility or lamellipodial activity. Microinjection of fluorescent vinculin indicated that focal adhesions on flexible substrates were irregularly shaped and highly dynamic whereas those on firm substrates had a normal morphology and were much more stable. Cells on flexible substrates also contained a reduced amount of phosphotyrosine at adhesion sites. Treatment of these cells with phenylarsine oxide, a tyrosine phosphatase inhibitor, induced the formation of normal, stable focal adhesions similar to those on firm substrates. Conversely, treatment of cells on firm substrates with myosin inhibitors 2,3-butanedione monoxime or KT5926 caused the reduction of both vinculin and phosphotyrosine at adhesion sites. These results demonstrate the ability of cells to survey the mechanical properties of their surrounding environment and suggest the possible involvement of both protein tyrosine phosphorylation and myosin-generated cortical forces in this process. Such response to physical parameters likely represents an important mechanism of cellular interaction with the surrounding environment within a complex organism.
                Bookmark

                Author and article information

                Contributors
                Journal
                0373226
                3643
                Exp Cell Res
                Exp. Cell Res.
                Experimental cell research
                0014-4827
                1090-2422
                19 May 2016
                28 October 2015
                10 April 2016
                10 April 2017
                : 343
                : 1
                : 14-20
                Affiliations
                [a ]Department of Cell Biology and Physiology, and Lineberger Comprehensive Cancer Center, 12-016 Lineberger, CB#7295, University of North Carolina, Chapel Hill, NC, USA
                [b ]Inserm UMR_S1087, CNRS UMR_C6291, L’institut du Thorax, and Université de Nantes, Nantes, France
                Author notes
                [* ]Corresponding author: Keith_Burridge@ 123456med.unc.edu (K. Burridge)
                Article
                NIHMS785710
                10.1016/j.yexcr.2015.10.029
                4891215
                26519907
                f74414ed-37b4-4bfb-adab-a3230943ac24

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                Cell biology
                myosin ii,rhoa,integrins,substratum rigidity
                Cell biology
                myosin ii, rhoa, integrins, substratum rigidity

                Comments

                Comment on this article