12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To investigate the role of aquaporin-1 (AQP1) water channels in proximal tubule function, in vitro proximal tubule microperfusion and in vivo micropuncture measurements were done on AQP1 knockout mice. The knockout mice were generated by targeted gene disruption and found previously to be unable to concentrate their urine in response to water deprivation. Unanesthetized knockout mice consumed 2.8-fold more fluid than wild-type mice and had lower urine osmolality (505 ± 40 vs. 1081 ± 68 milliosmolar). Transepithelial osmotic water permeability (P f) in isolated microperfused S2 segments of proximal tubule from AQP1 knockout [−/−] mice was 0.033 ± 0.005 cm/s (SE, n = 6 mice, 37°C), much lower than that of 0.15 ± 0.03 cm/s ( n = 8) in tubules from wild-type [+/+] mice ( P < 0.01). In the presence of isosmolar luminal perfusate and bath solutions, spontaneous fluid absorption rates (nl/min/mm tubule length) were 0.31 ± 0.12 (−/−, n = 5) and 0.64 ± 0.15 (+/+, n = 8). As determined by free-flow micropuncture, the ratios of tubular fluid-to-plasma concentrations of an impermeant marker TF/P in end proximal tubule fluid were 1.36 ± 0.05 (−/−, n = 8 mice [53 tubules]) and 1.95 ± 0.09 (+/+, n = 7 mice [40 tubules]) ( P < 0.001), corresponding to 26 ± 3% [−/−] and 48 ± 2% [+/+] absorption of the filtered fluid load. In collections of distal tubule fluid, TF/P were 2.8 ± 0.3 [−/−] and 4.4 ± 0.5 [+/+], corresponding to 62 ± 4% [−/−] and 76 ± 3% [+/+] absorption ( P < 0.02). These data indicate that AQP1 deletion in mice results in decreased transepithelial proximal tubule water permeability and defective fluid absorption. Thus, the high water permeability in proximal tubule of wild-type mice is primarily transcellular, mediated by AQP1 water channels, and required for efficient near-isosmolar fluid absorption.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels.

          Water channel aquaporin-1 (AQP1) is strongly expressed in kidney in proximal tubule and descending limb of Henle epithelia and in vasa recta endothelia. The grossly normal phenotype in human subjects deficient in AQP1 (Colton null blood group) and in AQP4 knockout mice has suggested that aquaporins (other than the vasopressin-regulated water channel AQP2) may not be important in mammalian physiology. We have generated transgenic mice lacking detectable AQP1 by targeted gene disruption. In kidney proximal tubule membrane vesicles from knockout mice, osmotic water permeability was reduced 8-fold compared with vesicles from wild-type mice. Although the knockout mice were grossly normal in terms of survival, physical appearance, and organ morphology, they became severely dehydrated and lethargic after water deprivation for 36 h. Body weight decreased by 35 +/- 2%, serum osmolality increased to >500 mOsm, and urinary osmolality (657 +/- 59 mOsm) did not change from that before water deprivation. In contrast, wild-type and heterozygous mice remained active after water deprivation, body weight decreased by 20-22%, serum osmolality remained normal (310-330 mOsm), and urine osmolality rose to >2500 mOsm. Urine [Na+] in water-deprived knockout mice was <10 mM, and urine osmolality was not increased by the V2 agonist DDAVP. The results suggest that AQP1 knockout mice are unable to create a hypertonic medullary interstitium by countercurrent multiplication. AQP1 is thus required for the formation of a concentrated urine by the kidney.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea.

            A new member of the aquaporin (AQP) family has been identified from rat testis. This gene, referred as aquaporin 7 (AQP7), encodes a 269-amino acid protein that contained the conserved NPA motifs of MIP family proteins. AQP7 has the amino acid sequence homology with other aquaporins ( approximately 30%), and it is highest with AQP3 (48%), suggesting that both AQP3 and AQP7 belong to a subfamily in the MIP family. Injection of AQP7-cRNA into Xenopus oocytes expressed a 26-kDa protein detected by immunoblotting. The expression of AQP7 in oocytes stimulated the osmotic water permeability by 10-fold which was not inhibited by 0.3 mM mercury chloride. The Arrhenius activation energy for the stimulated water permeability was low (2.1 kcal/mol). AQP7 also facilitated glycerol and urea transport by 5- and 9-fold, respectively. The activation energy for glycerol was also low (5.3 kcal/mol after the correction of the endogenous glycerol permeability of oocytes). Northern blot analysis revealed a 1.5-kilobase pair transcript expressed abundantly in testis. In situ hybridization of testis revealed the expression of AQP7 at late spermatids in seminiferous tubules. The immunohistochemistry of testis localized the AQP7 expression at late spermatids and at maturing sperms. AQP7 may play an important role in sperm function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The three-dimensional structure of aquaporin-1.

              The entry and exit of water from cells is a fundamental process of life. Recognition of the high water permeability of red blood cells led to the proposal that specialized water pores exist in the plasma membrane. Expression in Xenopus oocytes and functional studies of an erythrocyte integral membrane protein of relative molecular mass 28,000, identified it as the mercury-sensitive water channel, aquaporin-1 (AQP1). Many related proteins, all belonging to the major intrinsic protein (MIP) family, are found throughout nature. AQP1 is a homotetramer containing four independent aqueous channels. When reconstituted into lipid bilayers, the protein forms two-dimensional lattices with a unit cell containing two tetramers in opposite orientation. Here we present the three-dimensional structure of AQP1 determined at 6A resolution by cryo-electron microscopy. Each AQP1 monomer has six tilted, bilayer-spanning alpha-helices which form a right-handed bundle surrounding a central density. These results, together with functional studies, provide a model that identifies the aqueous pore in the AQP1 molecule and indicates the organization of the tetrameric complex in the membrane.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                PNAS
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 04 1998
                August 04 1998
                August 04 1998
                August 04 1998
                : 95
                : 16
                : 9660-9664
                Article
                10.1073/pnas.95.16.9660
                f7471bad-73d1-477a-a78f-8ea6ffeb17fa
                © 1998
                History

                Comments

                Comment on this article