70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The Dystrophin Complex Forms a Mechanically Strong Link between the Sarcolemma and Costameric Actin

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The absence of dystrophin complex leads to disorganization of the force-transmitting costameric cytoskeleton and disruption of sarcolemmal membrane integrity in skeletal muscle. However, it has not been determined whether the dystrophin complex can form a mechanically strong bond with any costameric protein. We performed confocal immunofluorescence analysis of isolated sarcolemma that were mechanically peeled from skeletal fibers of mouse hindlimb muscle. A population of γ-actin filaments was stably associated with sarcolemma isolated from normal muscle and displayed a costameric pattern that precisely overlapped with dystrophin. However, costameric actin was absent from all sarcolemma isolated from dystrophin-deficient mdx mouse muscle even though it was localized to costameres in situ. Vinculin, α-actinin, β-dystroglycan and utrophin were all retained on mdx sarcolemma, indicating that the loss of costameric actin was not due to generalized membrane instability. Our data demonstrate that the dystrophin complex forms a mechanically strong link between the sarcolemma and the costameric cytoskeleton through interaction with γ-actin filaments. Destabilization of costameric actin filaments may also be an important precursor to the costamere disarray observed in dystrophin-deficient muscle. Finally, these methods will be broadly useful in assessing the mechanical integrity of the membrane cytoskeleton in dystrophic animal models lacking other costameric proteins.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Dystrophin protects the sarcolemma from stresses developed during muscle contraction.

          The protein dystrophin, normally found on the cytoplasmic surface of skeletal muscle cell membranes, is absent in patients with Duchenne muscular dystrophy as well as mdx (X-linked muscular dystrophy) mice. Although its primary structure has been determined, the precise functional role of dystrophin remains the subject of speculation. In the present study, we demonstrate that dystrophin-deficient muscle fibers of the mdx mouse exhibit an increased susceptibility to contraction-induced sarcolemmal rupture. The level of sarcolemmal damage is directly correlated with the magnitude of mechanical stress placed upon the membrane during contraction rather than the number of activations of the muscle. These findings strongly support the proposition that the primary function of dystrophin is to provide mechanical reinforcement to the sarcolemma and thereby protect it from the membrane stresses developed during muscle contraction. Furthermore, the methodology used in this study should prove useful in assessing the efficacy of dystrophin gene therapy in the mdx mouse.
            • Record: found
            • Abstract: found
            • Article: not found

            Expression of full-length utrophin prevents muscular dystrophy in mdx mice.

            Duchenne muscular dystrophy (DMD) is a lethal, progressive muscle wasting disease caused by a loss of sarcolemmal bound dystrophin, which results in the death of the muscle fiber leading to the gradual depletion of skeletal muscle. The molecular structure of dystrophin is very similar to that of the related protein utrophin. Utrophin is found in all tissues and is confined to the neuromuscular and myotendinous junctions in mature muscle. Sarcolemmal localization of a truncated utrophin transgene in the dystrophin-deficient mdx mouse significantly improves the dystrophic muscle phenotype. Therefore, up-regulation of utrophin by drug therapy is a plausible therapeutic approach in the treatment of DMD. Here we demonstrate that expression of full-length utrophin in mdx mice prevents the development of muscular dystrophy. We assessed muscle morphology, fiber regeneration and mechanical properties (force development and resistance to stretch) of mdx and transgenic mdx skeletal and diaphragm muscle. The utrophin levels required in muscle are significantly less than the normal endogenous utrophin levels seen in lung and kidney, and we provide evidence that the pathology depends on the amount of utrophin expression. These results also have important implications for DMD therapies in which utrophin replacement is achieved by delivery using exogenous vectors.
              • Record: found
              • Abstract: not found
              • Article: not found

              Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage.

                Author and article information

                Contributors
                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                4 September 2000
                : 150
                : 5
                : 1209-1214
                Affiliations
                [a ]Department of Physiology, University of Wisconsin Medical School, Madison, Wisconsin 53706
                Article
                0006051
                10.1083/jcb.150.5.1209
                2175263
                10974007
                f74c4f04-227a-402c-bdc0-01c41a6a2f4d
                © 2000 The Rockefeller University Press
                History
                : 12 June 2000
                : 17 July 2000
                : 17 July 2000
                Categories
                Report

                Cell biology
                membrane skeleton,dystrophin,muscular dystrophy,actin,costameres
                Cell biology
                membrane skeleton, dystrophin, muscular dystrophy, actin, costameres

                Comments

                Comment on this article

                Related Documents Log