14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Costs and benefits of genetic heterogeneity within organisms.

      Journal of Evolutionary Biology
      Adaptation, Biological, genetics, Biological Evolution, Chimera, Genetic Heterogeneity, Genetic Variation, Models, Biological, Mosaicism, Phenotype, Selection, Genetic

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An increasing number of studies have recently detected within-organism genetic heterogeneity suggesting that genetically homogeneous organisms may be rare. In this review, we examine the potential costs and benefits of such intraorganismal genetic heterogeneity (IGH) on the fitness of the individual. The costs of IGH include cancerous growth, parasitism, competitive interactions and developmental instability, all of which threaten the integrity of the individual while the potential benefits are increased genetic variability, size-specific processes, and synergistic interactions between genetic variants. The particular cost or benefit of IGH in a specific case depends on the organism type and the origin of the IGH. While mosaicism easily arise by genetic changes in an individual, and will be the more common type of IGH, chimerism originates by the fusion of genetically distinct entities, and is expected to be substantially rare in most organisms. Potential conflicts and synergistic effects between different genetic lineages within an individual provide an interesting example for theoretical and empirical studies of multilevel selection.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: found
          • Article: not found

          Chance and necessity: the evolution of morphological complexity and diversity.

          The primary foundation for contemplating the possible forms of life elsewhere in the Universe is the evolutionary trends that have marked life on Earth. For its first three billion years, life on Earth was a world of microscopic forms, rarely achieving a size greater than a millimetre or a complexity beyond two or three cell types. But in the past 600 million years, the evolution of much larger and more complex organisms has transformed the biosphere. Despite their disparate forms and physiologies, the evolution and diversification of plants, animals, fungi and other macroforms has followed similar global trends. One of the most important features underlying evolutionary increases in animal and plant size, complexity and diversity has been their modular construction from reiterated parts. Although simple filamentous and spherical forms may evolve wherever cellular life exists, the evolution of motile, modular mega-organisms might not be a universal pattern.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altruism and social cheating in the social amoeba Dictyostelium discoideum.

            The social amoeba, Dictyostelium discoideum, is widely used as a simple model organism for multicellular development, but its multicellular fruiting stage is really a society. Most of the time, D. discoideum lives as haploid, free-living, amoeboid cells that divide asexually. When starved, 10(4)-10(5) of these cells aggregate into a slug. The anterior 20% of the slug altruistically differentiates into a non-viable stalk, supporting the remaining cells, most of which become viable spores. If aggregating cells come from multiple clones, there should be selection for clones to exploit other clones by contributing less than their proportional share to the sterile stalk. Here we use microsatellite markers to show that different clones collected from a field population readily mix to form chimaeras. Half of the chimaeric mixtures show a clear cheater and victim. Thus, unlike the clonal and highly cooperative development of most multicellular organisms, the development of D. discoideum is partly competitive, with conflicts of interests among cells. These conflicts complicate the use of D. discoideum as a model for some aspects of development, but they make it highly attractive as a model system for social evolution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms and consequences of somatic mosaicism in humans.

              Somatic mosaicism -- the presence of genetically distinct populations of somatic cells in a given organism -- is frequently masked, but it can also result in major phenotypic changes and reveal the expression of otherwise lethal genetic mutations. Mosaicism can be caused by DNA mutations, epigenetic alterations of DNA, chromosomal abnormalities and the spontaneous reversion of inherited mutations. In this review, we discuss the human disorders that result from somatic mosaicism, as well as the molecular genetic mechanisms by which they arise. Specifically, we emphasize the role of selection in the phenotypic manifestations of mosaicism.
                Bookmark

                Author and article information

                Journal
                15525396
                10.1111/j.1420-9101.2004.00808.x

                Chemistry
                Adaptation, Biological,genetics,Biological Evolution,Chimera,Genetic Heterogeneity,Genetic Variation,Models, Biological,Mosaicism,Phenotype,Selection, Genetic

                Comments

                Comment on this article