69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Environmental DNA metabarcoding: Transforming how we survey animal and plant communities

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA barcode for land plants.

          DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF-atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK-psbI spacer, and trnH-psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

            Background The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL + matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. Methodology/Principal Findings Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. Conclusions The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Performance comparison of benchtop high-throughput sequencing platforms.

              Three benchtop high-throughput sequencing instruments are now available. The 454 GS Junior (Roche), MiSeq (Illumina) and Ion Torrent PGM (Life Technologies) are laser-printer sized and offer modest set-up and running costs. Each instrument can generate data required for a draft bacterial genome sequence in days, making them attractive for identifying and characterizing pathogens in the clinical setting. We compared the performance of these instruments by sequencing an isolate of Escherichia coli O104:H4, which caused an outbreak of food poisoning in Germany in 2011. The MiSeq had the highest throughput per run (1.6 Gb/run, 60 Mb/h) and lowest error rates. The 454 GS Junior generated the longest reads (up to 600 bases) and most contiguous assemblies but had the lowest throughput (70 Mb/run, 9 Mb/h). Run in 100-bp mode, the Ion Torrent PGM had the highest throughput (80–100 Mb/h). Unlike the MiSeq, the Ion Torrent PGM and 454 GS Junior both produced homopolymer-associated indel errors (1.5 and 0.38 errors per 100 bases, respectively).
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley-Blackwell
                09621083
                November 2017
                November 26 2017
                : 26
                : 21
                : 5872-5895
                Article
                10.1111/mec.14350
                28921802
                f76a21b8-a9cc-47e3-9cbb-4b67d3c8cfae
                © 2017

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article