23
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Antimicrobial Resistance in Mycobacterium tuberculosis : The Odd One Out

      ,  
      Trends in Microbiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance (AMR) threats are typically represented by bacteria capable of extensive horizontal gene transfer (HGT). One clear exception is Mycobacterium tuberculosis (Mtb). It is an obligate human pathogen with limited genetic diversity and a low mutation rate which lacks any evidence for HGT. Such features should, in principle, reduce its ability to rapidly evolve AMR. We identify key features in its biology and epidemiology that allow it to overcome its low adaptive potential. We focus in particular on its innate resistance to drugs, its unusual life cycle, including an often extensive latent phase, and its ability to shelter from exposure to antimicrobial drugs within cavities it induces in the lungs.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage.

          Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae.

            Mycobacterium abscessus infections tend to respond poorly to macrolide-based chemotherapy, even though the organisms appear to be susceptible to clarithromycin. Circumstantial evidence suggested that at least some M. abscessus isolates might be inducibly resistant to macrolides. Thus, the purpose of this study was to investigate the macrolide phenotype of M. abscessus clinical isolates. Inducible resistance to clarithromycin (MIC > 32 microg/ml) was found for 7 of 10 clinical isolates of M. abscessus previously considered susceptible; the remaining 3 isolates were deemed to be susceptible (MIC
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study

              Summary Background Tuberculosis incidence in the UK has risen in the past decade. Disease control depends on epidemiological data, which can be difficult to obtain. Whole-genome sequencing can detect microevolution within Mycobacterium tuberculosis strains. We aimed to estimate the genetic diversity of related M tuberculosis strains in the UK Midlands and to investigate how this measurement might be used to investigate community outbreaks. Methods In a retrospective observational study, we used Illumina technology to sequence M tuberculosis genomes from an archive of frozen cultures. We characterised isolates into four groups: cross-sectional, longitudinal, household, and community. We measured pairwise nucleotide differences within hosts and between hosts in household outbreaks and estimated the rate of change in DNA sequences. We used the findings to interpret network diagrams constructed from 11 community clusters derived from mycobacterial interspersed repetitive-unit–variable-number tandem-repeat data. Findings We sequenced 390 separate isolates from 254 patients, including representatives from all five major lineages of M tuberculosis. The estimated rate of change in DNA sequences was 0·5 single nucleotide polymorphisms (SNPs) per genome per year (95% CI 0·3–0·7) in longitudinal isolates from 30 individuals and 25 families. Divergence is rarely higher than five SNPs in 3 years. 109 (96%) of 114 paired isolates from individuals and households differed by five or fewer SNPs. More than five SNPs separated isolates from none of 69 epidemiologically linked patients, two (15%) of 13 possibly linked patients, and 13 (17%) of 75 epidemiologically unlinked patients (three-way comparison exact p<0·0001). Genetic trees and clinical and epidemiological data suggest that super-spreaders were present in two community clusters. Interpretation Whole-genome sequencing can delineate outbreaks of tuberculosis and allows inference about direction of transmission between cases. The technique could identify super-spreaders and predict the existence of undiagnosed cases, potentially leading to early treatment of infectious patients and their contacts. Funding Medical Research Council, Wellcome Trust, National Institute for Health Research, and the Health Protection Agency.
                Bookmark

                Author and article information

                Journal
                Trends in Microbiology
                Trends in Microbiology
                Elsevier BV
                0966842X
                August 2016
                August 2016
                : 24
                : 8
                : 637-648
                Article
                10.1016/j.tim.2016.03.007
                27068531
                f770b223-5c7d-4dec-b689-4821fa407a30
                © 2016

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article