Blog
About

1
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Current Understanding of HIF in Renal Disease

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypoxia-inducible factors (HIF) are ubiquitous transcription factors regulated by oxygen-dependent proteolysis, and hence rapidly mount an adaptational response to hypoxia. The HIF system is apparently more complex than initially considered in the perspective of the increasing number of HIF target genes, and the inter-relationship with various additional regulatory pathways. Regional hypoxia is believed to play a major role in renal disease. Experimental data confirm a role for HIF in renal pathophysiology. The discovery of HIF prolyl-hydroxylases as key enzymes of oxygen sensing and HIF proteolysis offer new possibilities to therapeutically target HIF. Herein, we review basic concepts of HIF regulation, and existing data on HIF activation in renal disease.

          Related collections

          Most cited references 88

          • Record: found
          • Abstract: found
          • Article: not found

          HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia.

          Hypoxia-inducible factor (HIF), a transcriptional complex conserved from Caenorhabditis elegans to vertebrates, plays a pivotal role in cellular adaptation to low oxygen availability. In normoxia, the HIF-alpha subunits are targeted for destruction by prolyl hydroxylation, a specific modification that provides recognition for the E3 ubiquitin ligase complex containing the von Hippel-Lindau tumour suppressor protein (pVHL). Three HIF prolyl-hydroxylases (PHD1, 2 and 3) were identified recently in mammals and shown to hydroxylate HIF-alpha subunits. Here we show that specific 'silencing' of PHD2 with short interfering RNAs is sufficient to stabilize and activate HIF-1alpha in normoxia in all the human cells investigated. 'Silencing' of PHD1 and PHD3 has no effect on the stability of HIF-1alpha either in normoxia or upon re-oxygenation of cells briefly exposed to hypoxia. We therefore conclude that, in vivo, PHDs have distinct assigned functions, PHD2 being the critical oxygen sensor setting the low steady-state levels of HIF-1alpha in normoxia. Interestingly, PHD2 is upregulated by hypoxia, providing an HIF-1-dependent auto-regulatory mechanism driven by the oxygen tension.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity.

            Hypoxia-inducible factor 1 (HIF-1) is a master regulator of oxygen homeostasis that controls angiogenesis, erythropoiesis, and glycolysis via transcriptional activation of target genes under hypoxic conditions. O(2)-dependent binding of the von Hippel-Lindau (VHL) tumor suppressor protein targets the HIF-1alpha subunit for ubiquitination and proteasomal degradation. The activity of the HIF-1alpha transactivation domains is also O(2) regulated by a previously undefined mechanism. Here, we report the identification of factor inhibiting HIF-1 (FIH-1), a protein that binds to HIF-1alpha and inhibits its transactivation function. In addition, we demonstrate that FIH-1 binds to VHL and that VHL also functions as a transcriptional corepressor that inhibits HIF-1alpha transactivation function by recruiting histone deacetylases. Involvement of VHL in association with FIH-1 provides a unifying mechanism for the modulation of HIF-1alpha protein stabilization and transcriptional activation in response to changes in cellular O(2) concentration.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia-inducible factor 1: master regulator of O2 homeostasis.

              Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that mediates essential homeostatic responses to reduced O2 availability in mammals. Recent studies have provided insights into the O2-dependent regulation of HIF-1 expression, target genes regulated by HIF-1, and the effects of HIF-1 deficiency on cellular physiology and embryonic development.
                Bookmark

                Author and article information

                Journal
                KBR
                Kidney Blood Press Res
                10.1159/issn.1420-4096
                Kidney and Blood Pressure Research
                S. Karger AG
                978-3-8055-8058-8
                978-3-318-01305-4
                1420-4096
                1423-0143
                2005
                March 2006
                20 March 2006
                : 28
                : 5-6
                : 325-340
                Affiliations
                aNephrology and Medical intensive Care, Charité University Clinic, Berlin, Germany; bDepartment of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Mass., USA; cDepartment of Medicine, Hadassah Hospital Mt. Scopus and the Hebrew University Medical School, Jerusalem, Israel
                Article
                90187 Kidney Blood Press Res 2005;28:325–340
                10.1159/000090187
                16534228
                © 2005 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, Tables: 2, References: 145, Pages: 16
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/90187
                Categories
                Current Issues in Chronic Renal Failure

                Comments

                Comment on this article