22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Petal effect: a superhydrophobic state with high adhesive force.

      Langmuir : the ACS journal of surfaces and colloids
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hierarchical micropapillae and nanofolds are known to exist on the petals' surfaces of red roses. These micro- and nanostructures provide a sufficient roughness for superhydrophobicity and yet at the same time a high adhesive force with water. A water droplet on the surface of the petal appears spherical in shape, which cannot roll off even when the petal is turned upside down. We define this phenomenon as the "petal effect" as compared with the popular "lotus effect". Artificial fabrication of biomimic polymer films, with well-defined nanoembossed structures obtained by duplicating the petal's surface, indicates that the superhydrophobic surface and the adhesive petal are in Cassie impregnating wetting state.

          Related collections

          Author and article information

          Journal
          18312016
          10.1021/la703821h

          Comments

          Comment on this article

          scite_