17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MS80, a novel sulfated oligosaccharide, inhibits pulmonary fibrosis by targeting TGF-β1 both in vitro and in vivo

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          The pro-fibrogenic cytokine transforming growth factor-beta 1 (TGF-β1) has attracted much attention for its potential role in the etiology of idiopathic pulmonary fibrosis (IPF). Here, we demonstrate that MS80, a novel sulfated oligosaccharide extracted from seaweed, can bind TGF-β1. The aim of the present study was to determine whether MS80 is capable of combating TGF-β1-mediated pulmonary fibrotic events both in vitro and in vivo, and to investigate the possible underlying mechanisms.

          Methods:

          Surface plasmon resonance was used to uncover the binding profiles between the compound and TGF-β. MTT assay, flow cytometry, Western blot analysis, BCA protein assay and SDS-PAGE gelatin zymography were used to probe the antifibrotic mechanisms of MS80. The in vivo fibrotic efficacy was evaluated in a bleomycin instillation-induced rat model.

          Results:

          We report that MS80, a new kind of sulfated oligosaccharide extracted from seaweed, inhibits TGF-β1-induced pulmonary fibrosis in vitro and bleomycin-induced pulmonary fibrosis in vivo. Our results indicated that MS80 competitively inhibited heparin/HS-TGF-β1 interaction through its high binding affinity for TGF-β1. Moreover, MS80 arrested TGF-β1-induced human embryo pulmonary fibroblast (HEPF) cell proliferation, collagen deposition and matrix metalloproteinase (MMP) activity. Intriguingly, MS80 deactivated both the ERK and p38 signaling pathways. MS80 was also a potent suppressor of bleomycin-induced rat pulmonary fibrosis in vivo, as evidenced by improved pathological settings and decreased lung collagen contents.

          Conclusion:

          MS80 in particular, and perhaps oligosaccharide in general, offer better pharmacological profiles with appreciably few side effects and represent a promising class of drug candidates for IPF therapy.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase.

          Myofibroblast differentiation and activation by transforming growth factor-beta1 (TGF-beta1) is a critical event in the pathogenesis of human fibrotic diseases, but regulatory mechanisms for this effect are unclear. In this report, we demonstrate that stable expression of the myofibroblast phenotype requires both TGF-beta1 and adhesion-dependent signals. TGF-beta1-induced myofibroblast differentiation of lung fibroblasts is blocked in non-adherent cells despite the preservation of TGF-beta receptor(s)-mediated signaling of Smad2 phosphorylation. TGF-beta1 induces tyrosine phosphorylation of focal adhesion kinase (FAK) including that of its autophosphorylation site, Tyr-397, an effect that is dependent on cell adhesion and is delayed relative to early Smad signaling. Pharmacologic inhibition of FAK or expression of kinase-deficient FAK, mutated by substituting Tyr-397 with Phe, inhibit TGF-beta1-induced alpha-smooth muscle actin expression, stress fiber formation, and cellular hypertrophy. Basal expression of alpha-smooth muscle actin is elevated in cells grown on fibronectin-coated dishes but is decreased on laminin and poly-d-lysine, a non-integrin binding polypeptide. TGF-beta1 up-regulates expression of integrins and fibronectin, an effect that is associated with autophosphorylation/activation of FAK. Thus, a safer and more effective therapeutic strategy for fibrotic diseases characterized by persistent myofibroblast activation may be to target this integrin/FAK pathway while not interfering with tumor-suppressive functions of TGF-beta1/Smad signaling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased production and immunohistochemical localization of transforming growth factor-beta in idiopathic pulmonary fibrosis.

            Transforming growth factor-beta (TGF-beta) can regulate cell growth and differentiation as well as production of extracellular matrix proteins. Elevated production of TGF-beta has been associated with human and rodent chronic inflammatory and fibrotic diseases. Using immunohistochemical staining, we have examined lung sections of patients with advanced idiopathic pulmonary fibrosis (IPF), a disease characterized by chronic inflammation and fibrosis and demonstrated a marked and consistent increase in TGF-beta production in epithelial cells and macrophages when compared to patients with nonspecific inflammation and those with no inflammation or fibrosis. In patients with advanced IPF, intracellular staining with anti-LC (1-30) TGF-beta antibody was seen prominently in bronchiolar epithelial cells. In addition, epithelial cells of honeycomb cysts and hyperplastic type II pneumocytes stained intensely. Anti-CC (1-30) TGF-beta antibody, which reacts with extracellular TGF-beta, was localized in the lamina propria of bronchioles and in subepithelial regions of honeycomb cysts in areas of dense fibroconnective tissue deposition. The close association of subepithelial TGF-beta to the intracellular form in advanced IPF suggests that TGF-beta was produced and secreted primarily by epithelial cells. Because of the well-known effects of TGF-beta on extracellular matrix formation and on epithelial cell differentiation, the increased production of TGF-beta in advanced IPF may be pathogenic to the pulmonary fibrotic and regenerative responses seen in this disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-6 regulation of transforming growth factor (TGF)-beta receptor compartmentalization and turnover enhances TGF-beta1 signaling.

              Transforming growth factor (TGF)-beta1 is a key cytokine involved in the pathogenesis of fibrosis in many organs, whereas interleukin (IL)-6 plays an important role in the regulation of inflammation. Recent reports demonstrate interaction between the two cytokines in disease states. We have assessed the effect of IL-6 on TGF-beta1 signaling and defined the mechanism by which this occurred. Stimulation of Smad-responsive promoter (SBE)4-Lux activity by TGF-beta1 was significantly greater in the presence of IL-6 than that induced by TGF-beta1 alone. Augmented TGF-beta1 signaling following the addition of IL-6 appeared to be mediated through binding to the cognate IL-6 receptor, the presence of which was confirmed by fluorescence-activated cell sorting and Stat-specific signaling. TGF-beta1 receptors internalize by both caveolin-1 (Cav-1) lipid raft and early endosome antigen 1 (EEA-1) non-lipid raft pathways, with non-lipid raft-associated internalization increasing TGF-beta1 signaling. Affinity labeling of TGF-beta1 receptors demonstrated that IL-6 stimulation resulted in increased partitioning of TGF-beta receptors to the non-lipid raft fraction. There was no change in expression of Cav-1; however, following IL-6 stimulation, co-immunoprecipitation demonstrated decreased association of IL-6 receptor with Cav-1. Increased TGF-beta1-dependent Smad signaling by IL-6 was significantly attenuated by inhibition of clathrin-mediated endocytosis and augmented by depletion of membrane cholesterol. These results indicate that IL-6 increased trafficking of TGF-beta1 receptors to non-lipid raft-associated pools results in augmented TGF-beta1 Smad signaling.
                Bookmark

                Author and article information

                Journal
                Acta Pharmacol Sin
                Acta Pharmacol. Sin
                Acta Pharmacologica Sinica
                Nature Publishing Group
                1671-4083
                1745-7254
                July 2009
                22 June 2009
                : 30
                : 7
                : 973-979
                Affiliations
                [1 ]School of Medicine and Pharmacy, Ocean University of China , Qingdao 266003, China
                [2 ]Division of Respiratory Medicine, Affiliated Hospital of Qingdao University , Qingdao 266071, China
                Author notes
                Article
                aps200986
                10.1038/aps.2009.86
                4006651
                19543300
                f77e8947-7c63-4a7d-88eb-0ac9823f6ae7
                Copyright © 2009 CPS and SIMM
                History
                : 27 April 2009
                : 04 May 2009
                Categories
                Original Article

                Pharmacology & Pharmaceutical medicine
                sulfated oligosaccharide ms80,idiopathic pulmonary fibrosis,tgf-β1

                Comments

                Comment on this article