39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of caves are formed within limestone rock and hence our understanding of cave microbiology comes from carbonate-buffered systems. In this paper, we describe the microbial diversity of Roraima Sur Cave (RSC), an orthoquartzite (SiO 4) cave within Roraima Tepui, Venezuela. The cave contains a high level of microbial activity when compared with other cave systems, as determined by an ATP-based luminescence assay and cell counting. Molecular phylogenetic analysis of microbial diversity within the cave demonstrates the dominance of Actinomycetales and Alphaproteobacteria in endolithic bacterial communities close to the entrance, while communities from deeper in the cave are dominated (82–84%) by a unique clade of Ktedonobacterales within the Chloroflexi. While members of this phylum are commonly found in caves, this is the first identification of members of the Class Ktedonobacterales. An assessment of archaeal species demonstrates the dominance of phylotypes from the Thaumarchaeota Group I.1c (100%), which have previously been associated with acidic environments. While the Thaumarchaeota have been seen in numerous cave systems, the dominance of Group I.1c in RSC is unique and a departure from the traditional archaeal community structure. Geochemical analysis of the cave environment suggests that water entering the cave, rather than the nutrient-limited orthoquartzite rock, provides the carbon and energy necessary for microbial community growth and subsistence, while the poor buffering capacity of quartzite or the low pH of the environment may be selecting for this unusual community structure. Together these data suggest that pH, imparted by the geochemistry of the host rock, can play as important a role in niche-differentiation in caves as in other environmental systems.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Archaea in coastal marine environments.

          E Delong (1992)
          Archaea (archaebacteria) are a phenotypically diverse group of microorganisms that share a common evolutionary history. There are four general phenotypic groups of archaea: the methanogens, the extreme halophiles, the sulfate-reducing archaea, and the extreme thermophiles. In the marine environment, archaeal habitats are generally limited to shallow or deep-sea anaerobic sediments (free-living and endosymbiotic methanogens), hot springs or deep-sea hydrothermal vents (methanogens, sulfate reducers, and extreme thermophiles), and highly saline land-locked seas (halophiles). This report provides evidence for the widespread occurrence of unusual archaea in oxygenated coastal surface waters of North America. Quantitative estimates indicated that up to 2% of the total ribosomal RNA extracted from coastal bacterioplankton assemblages was archaeal. Archaeal small-subunit ribosomal RNA-encoding DNAs (rDNAs) were cloned from mixed bacterioplankton populations collected at geographically distant sampling sites. Phylogenetic and nucleotide signature analyses of these cloned rDNAs revealed the presence of two lineages of archaea, each sharing the diagnostic signatures and structural features previously established for the domain Archaea. Both of these lineages were found in bacterioplankton populations collected off the east and west coasts of North America. The abundance and distribution of these archaea in oxic coastal surface waters suggests that these microorganisms represent undescribed physiological types of archaea, which reside and compete with aerobic, mesophilic eubacteria in marine coastal environments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota.

            The archaeal domain is currently divided into two major phyla, the Euryarchaeota and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic archaea have been discovered and affiliated with the Crenarchaeota. It was recently recognized that these archaea have a major role in geochemical cycles. Based on the first genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives are not Crenarchaeota, but should be considered as a third archaeal phylum, which we propose to name Thaumarchaeota (from the Greek 'thaumas', meaning wonder).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis

              The Ribosomal Database Project (RDP-II) provides the research community with aligned and annotated rRNA gene sequences, along with analysis services and a phylogenetically consistent taxonomic framework for these data. Updated monthly, these services are made available through the RDP-II website (http://rdp.cme.msu.edu/). RDP-II release 9.21 (August 2004) contains 101 632 bacterial small subunit rRNA gene sequences in aligned and annotated format. High-throughput tools for initial taxonomic placement, identification of related sequences, probe and primer testing, data navigation and subalignment download are provided. The RDP-II email address for questions or comments is rdpstaff@msu.edu.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                26 November 2014
                2014
                : 5
                : 615
                Affiliations
                [1] 1Department of Biology and Department of Geosciences, University of Akron Akron, OH, USA
                [2] 2Department of Biological Sciences, Northern Kentucky University, Highland Heights KY, USA
                [3] 3Departamento de Biología de Organismos, Universidad Simón Bolívar Caracas, Venezuela
                [4] 4Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder CO, USA
                [5] 5Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology Pasadena, CA, USA
                Author notes

                Edited by: D’Arcy Renee Meyer-Dombard, University of Illinois at Chicago, USA

                Reviewed by: John R. Spear, Colorado School of Mines, USA; Julie L. Meyer, University of Florida, USA

                *Correspondence: Hazel A. Barton, Department of Biology and Department of Geosciences, University of Akron, 185 East Mill Street, Akron, OH 44325, USA e-mail: bartonh@ 123456uakron.edu

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00615
                4244709
                25505450
                f7820f11-9928-4ae9-83f8-3f8ed119f392
                Copyright © 2014 Barton, Giarrizzo, Suarez, Robertson, Broering, Banks, Vaishampayan and Venkateswaran.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 August 2014
                : 28 October 2014
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 95, Pages: 14, Words: 0
                Categories
                Microbiology
                Original Research Article

                Microbiology & Virology
                orthoquartzite,cave,ktedonobacterales,thaumarchaeota,geomicrobiology
                Microbiology & Virology
                orthoquartzite, cave, ktedonobacterales, thaumarchaeota, geomicrobiology

                Comments

                Comment on this article