67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Trypanosoma cruzi Protease Cruzain Mediates Immune Evasion

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ∼P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.

          Author Summary

          Trypanosoma cruzi ( T. cruzi) is the unicellular parasite that causes Chagas' disease, a devastating health burden throughout Latin America now also affecting developed countries. Macrophages are the first cells that become infected by T. cruzi and disseminate the infection to other tissues. The parasite then preferentially infects and multiplies within heart muscle cells causing severe heart disease and often death. The new drug K11777 targets a vital parasite enzyme, the protease cruzain. Consequently, it is important to understand what the enzyme is doing during infection. To elucidate the role of the protease, we compared infection of macrophages with parental wild type parasites and with protease deficient T. cruzi. We now report a role for the parasitic protease in immune evasion. The protease prevents macrophage activation thus allowing T. cruzi survival and replication, and favoring the spread of infection.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Oscillations in NF-kappaB signaling control the dynamics of gene expression.

          Signaling by the transcription factor nuclear factor kappa B (NF-kappaB) involves its release from inhibitor kappa B (IkappaB) in the cytosol, followed by translocation into the nucleus. NF-kappaB regulation of IkappaBalpha transcription represents a delayed negative feedback loop that drives oscillations in NF-kappaB translocation. Single-cell time-lapse imaging and computational modeling of NF-kappaB (RelA) localization showed asynchronous oscillations following cell stimulation that decreased in frequency with increased IkappaBalpha transcription. Transcription of target genes depended on oscillation persistence, involving cycles of RelA phosphorylation and dephosphorylation. The functional consequences of NF-kappaB signaling may thus depend on number, period, and amplitude of oscillations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2.

            Toll-like receptor (TLR) 2 has recently been associated with cellular responses to numerous microbial products, including LPS and bacterial lipoproteins. However, many preparations of LPS contain low concentrations of highly bioactive contaminants described previously as "endotoxin protein," suggesting that these contaminants could be responsible for the TLR2-mediated signaling observed upon LPS stimulation. To test this hypothesis, commercial preparations of LPS were subjected to a modified phenol re-extraction protocol to eliminate endotoxin protein. While it did not influence the ability to stimulate cells from wild-type mice, repurification eliminated the ability of LPS to activate cells from C3H/HeJ (Lpsd) mice. Additionally, only cell lines transfected with human TLR4, but not human or murine TLR2, acquired responsiveness to both re-extracted LPS and to a protein-free, synthetic preparation of lipid A. These results suggest that neither human nor murine TLR2 plays a role in LPS signaling in the absence of contaminating endotoxin protein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Good cop, bad cop: the different faces of NF-kappaB.

              Complexes formed from the nuclear factor kappaB (NF-kappaB) family of transcription factors are ubiquitously expressed and are induced by a diverse array of stimuli. This results in their becoming activated in a wide variety of different settings. While the functions of NF-kappaB in many of these contexts have been the subject of intense research and are now well established, it is also clear that there is great diversity in the effects and consequences of NF-kappaB activation. NF-kappaB subunits do not necessarily regulate the same genes, in an identical manner, in all of the different circumstances in which they are induced. This review will discuss the different functions of NF-kappaB, the pathways that modulate NF-kappaB subunit activity and, in contrast to its more commonly thought of role as a promoter of cancer cell growth and survival, the ability of NF-kappaB, under some circumstances, to behave as a tumor suppressor.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                September 2011
                September 2011
                1 September 2011
                : 7
                : 9
                : e1002139
                Affiliations
                [1]Tropical Disease Research Unit and Sandler Center for Drug Discovery, Department of Pathology, University of California, San Francisco, California, United States of America
                Imperial College London, United Kingdom
                Author notes

                ¤: Current address: Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America.

                Conceived and designed the experiments: PSD JCE. Performed the experiments: PSD YMZ IH JCE. Analyzed the data: PSD JCE JHM DCG. Contributed reagents/materials/analysis tools: DCG. Wrote the paper: PSD.

                Article
                PPATHOGENS-D-10-00479
                10.1371/journal.ppat.1002139
                3164631
                21909255
                f788aa30-d3d9-41f6-bbe6-0e6377f329e1
                Doyle et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 November 2010
                : 11 May 2011
                Page count
                Pages: 11
                Categories
                Research Article
                Biology
                Medicine

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article