+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The UNC-6/Netrin receptors UNC-40/DCC and UNC-5 inhibit growth cone filopodial protrusion via UNC-73/Trio, Rac-like GTPases and UNC-33/CRMP

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          UNC-6/Netrin is a conserved axon guidance cue that can mediate both attraction and repulsion. We previously discovered that attractive UNC-40/DCC receptor signaling stimulates growth cone filopodial protrusion and that repulsive UNC-40–UNC-5 heterodimers inhibit filopodial protrusion in C. elegans. Here, we identify cytoplasmic signaling molecules required for UNC-6-mediated inhibition of filopodial protrusion involved in axon repulsion. We show that the Rac-like GTPases CED-10 and MIG-2, the Rac GTP exchange factor UNC-73/Trio, UNC-44/Ankyrin and UNC-33/CRMP act in inhibitory UNC-6 signaling. These molecules were required for the normal limitation of filopodial protrusion in developing growth cones and for inhibition of growth cone filopodial protrusion caused by activated MYR::UNC-40 and MYR::UNC-5 receptor signaling. Epistasis studies using activated CED-10 and MIG-2 indicated that UNC-44 and UNC-33 act downstream of the Rac-like GTPases in filopodial inhibition. UNC-73, UNC-33 and UNC-44 did not affect the accumulation of full-length UNC-5::GFP and UNC-40::GFP in growth cones, consistent with a model in which UNC-73, UNC-33 and UNC-44 influence cytoskeletal function during growth cone filopodial inhibition.

          Related collections

          Most cited references 61

          • Record: found
          • Abstract: not found
          • Article: not found

          DNA transformation.

           A Fire,  Craig Mello (1994)
            • Record: found
            • Abstract: found
            • Article: not found

            Rho GTPases and the control of cell behaviour.

             A. Hall (2005)
            Rho, Rac and Cdc42, three members of the Rho family of small GTPases, each control a signal transduction pathway linking membrane receptors to the assembly and disassembly of the actin cytoskeleton and of associated integrin adhesion complexes. Rho regulates stress fibre and focal adhesion assembly, Rac regulates the formation of lamellipodia protrusions and membrane ruffles, and Cdc42 triggers filopodial extensions at the cell periphery. These observations have led to the suggestion that wherever filamentous actin is used to drive a cellular process, Rho GTPases are likely to play an important regulatory role. Rho GTPases have also been reported to control other cellular activities, such as the JNK (c-Jun N-terminal kinase) and p38 MAPK (mitogen-activated protein kinase) cascades, an NADPH oxidase enzyme complex, the transcription factors NF-kappaB (nuclear factor kappaB) and SRF (serum-response factor), and progression through G1 of the cell cycle. Thus Rho, Rac and Cdc42 can regulate the actin cytoskeleton and gene transcription to promote co-ordinated changes in cell behaviour. We have been analysing the biochemical contributions of Rho GTPases in cell movement and have found that Rac controls cell protrusion, while Cdc42 controls cell polarity.
              • Record: found
              • Abstract: found
              • Article: not found

              A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion.

              Netrins are bifunctional: they attract some axons and repel others. Netrin receptors of the Deleted in Colorectal Cancer (DCC) family are implicated in attraction and those of the UNC5 family in repulsion, but genetic evidence also suggests involvement of the DCC protein UNC-40 in some cases of repulsion. To test whether these proteins form a receptor complex for repulsion, we studied the attractive responses of Xenopus spinal axons to netrin-1, which are mediated by DCC. We show that attraction is converted to repulsion by expression of UNC5 proteins in these cells, that this repulsion requires DCC function, that the UNC5 cytoplasmic domain is sufficient to effect the conversion, and that repulsion can be initiated by netrin-1 binding to either UNC5 or DCC. The isolated cytoplasmic domains of DCC and UNC5 proteins interact directly, but this interaction is repressed in the context of the full-length proteins. We provide evidence that netrin-1 triggers the formation of a receptor complex of DCC and UNC5 proteins and simultaneously derepresses the interaction between their cytoplasmic domains, thereby converting DCC-mediated attraction to UNC5/DCC-mediated repulsion.

                Author and article information

                Development (Cambridge, England)
                The Company of Biologists
                15 November 2014
                15 November 2014
                : 141
                : 22
                : 4395-4405
                Programs in Genetics and Molecular, Cellular, and Developmental Biology, Department of Molecular Biosciences, The University of Kansas , 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
                Author notes

                Present address: FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA.

                []Author for correspondence ( erikl@ )
                © 2014. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                Research Article

                Developmental biology

                unc-40/dcc, unc-5, unc-6, axon repulsion, filopodia, caenorhabditis elegans, growth cone


                Comment on this article