13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Streaking artifacts reduction in four-dimensional cone-beam computed tomography.

      Medical physics
      Algorithms, Artifacts, Cone-Beam Computed Tomography, methods, Humans, Imaging, Three-Dimensional, Motion, Phantoms, Imaging, Radiographic Image Enhancement, Radiographic Image Interpretation, Computer-Assisted, Reproducibility of Results, Respiratory Mechanics, Sensitivity and Specificity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cone-beam computed tomography (CBCT) using an "on-board" x-ray imaging device integrated into a radiation therapy system has recently been made available for patient positioning, target localization, and adaptive treatment planning. One of the challenges for gantry mounted image-guided radiation therapy (IGRT) systems is the slow acquisition of projections for cone-beam CT (CBCT), which makes them sensitive to any patient motion during the scans. Aiming at motion artifact reduction, four-dimensional CBCT (4D CBCT) techniques have been introduced, where a surrogate for the target's motion profile is utilized to sort the cone-beam data by respiratory phase. However, due to the limited gantry rotation speed and limited readout speed of the on-board imager, fewer than 100 projections are available for the image reconstruction at each respiratory phase. Thus, severe undersampling streaking artifacts plague 4D CBCT images. In this paper, the authors propose a simple scheme to significantly reduce the streaking artifacts. In this method, a prior image is first reconstructed using all available projections without gating, in which static structures are well reconstructed while moving objects are blurred. The undersampling streaking artifacts from static structures are estimated from this prior image volume and then can be removed from the phase images using gated reconstruction. The proposed method was validated using numerical simulations, experimental phantom data, and patient data. The fidelity of stationary and moving objects is maintained, while large gains in streak artifact reduction are observed. Using this technique one can reconstruct 4D CBCT datasets using no more projections than are acquired in a 60 s scan. At the same time, a temporal gating window as narrow as 100 ms was utilized. Compared to the conventional 4D CBCT reconstruction, streaking artifacts were reduced by 60% to 70%.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Fast calculation of the exact radiological path for a three-dimensional CT array

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flat-panel cone-beam computed tomography for image-guided radiation therapy.

            Geometric uncertainties in the process of radiation planning and delivery constrain dose escalation and induce normal tissue complications. An imaging system has been developed to generate high-resolution, soft-tissue images of the patient at the time of treatment for the purpose of guiding therapy and reducing such uncertainties. The performance of the imaging system is evaluated and the application to image-guided radiation therapy is discussed. A kilovoltage imaging system capable of radiography, fluoroscopy, and cone-beam computed tomography (CT) has been integrated with a medical linear accelerator. Kilovoltage X-rays are generated by a conventional X-ray tube mounted on a retractable arm at 90 degrees to the treatment source. A 41 x 41 cm(2) flat-panel X-ray detector is mounted opposite the kV tube. The entire imaging system operates under computer control, with a single application providing calibration, image acquisition, processing, and cone-beam CT reconstruction. Cone-beam CT imaging involves acquiring multiple kV radiographs as the gantry rotates through 360 degrees of rotation. A filtered back-projection algorithm is employed to reconstruct the volumetric images. Geometric nonidealities in the rotation of the gantry system are measured and corrected during reconstruction. Qualitative evaluation of imaging performance is performed using an anthropomorphic head phantom and a coronal contrast phantom. The influence of geometric nonidealities is examined. Images of the head phantom were acquired and illustrate the submillimeter spatial resolution that is achieved with the cone-beam approach. High-resolution sagittal and coronal views demonstrate nearly isotropic spatial resolution. Flex corrections on the order of 0.2 cm were required to compensate gravity-induced flex in the support arms of the source and detector, as well as slight axial movements of the entire gantry structure. Images reconstructed without flex correction suffered from loss of detail, misregistration, and streak artifacts. Reconstructions of the contrast phantom demonstrate the soft-tissue imaging capability of the system. A contrast of 47 Hounsfield units was easily detected in a 0.1-cm-thick reconstruction for an imaging exposure of 1.2 R (in-air, in absence of phantom). The comparison with a conventional CT scan of the phantom further demonstrates the spatial resolution advantages of the cone-beam CT approach. A kV cone-beam CT imaging system based on a large-area, flat-panel detector has been successfully adapted to a medical linear accelerator. The system is capable of producing images of soft tissue with excellent spatial resolution at acceptable imaging doses. Integration of this technology with the medical accelerator will result in an ideal platform for high-precision, image-guided radiation therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Distance-driven projection and backprojection in three dimensions.

              E Man, S. Basu (2004)
              Projection and backprojection are operations that arise frequently in tomographic imaging. Recently, we proposed a new method for projection and backprojection, which we call distance-driven, and that offers low arithmetic cost and a highly sequential memory access pattern. Furthermore, distance-driven projection and backprojection avoid several artefact-inducing approximations characteristic of some other methods. We have previously demonstrated the application of this method to parallel and fan beam geometries. In this paper, we extend the distance-driven framework to three dimensions and demonstrate its application to cone beam reconstruction. We also present experimental results to demonstrate the computational performance, the artefact characteristics and the noise-resolution characteristics of the distance-driven method in three dimensions.
                Bookmark

                Author and article information

                Comments

                Comment on this article