15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young’s modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA–nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA–nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.

          Abstract

          Crystals assembled with DNA-conjugated nanoparticles are subjected to uniaxial strain, and are found to exhibit a tunable mechanical response that is highly sensitive to the choice of linking DNA sequences.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

          Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Organization of 'nanocrystal molecules' using DNA.

            Patterning matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of 'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two- and three-dimensional assemblies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA-guided crystallization of colloidal nanoparticles.

              Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only approximately 4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.
                Bookmark

                Author and article information

                Journal
                ACS Cent Sci
                ACS Cent Sci
                oc
                acscii
                ACS Central Science
                American Chemical Society
                2374-7943
                2374-7951
                17 August 2016
                28 September 2016
                : 2
                : 9
                : 614-620
                Affiliations
                []Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
                []Department of Chemical and Biological Engineering, University of Wisconsin—Madison , Madison, Wisconsin 53706, United States
                [§ ]Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
                Author notes
                Article
                10.1021/acscentsci.6b00170
                5043426
                f7a141fd-7841-4ef7-bd1e-7856eb26c776
                Copyright © 2016 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 10 June 2016
                Categories
                Research Article
                Custom metadata
                oc6b00170
                oc-2016-00170c

                Comments

                Comment on this article