63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Climate, competition and connectivity affect future migration and ranges of European trees : Future migration and ranges of European trees

      , , ,
      Global Ecology and Biogeography
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          A globally coherent fingerprint of climate change impacts across natural systems.

          Causal attribution of recent biological trends to climate change is complicated because non-climatic influences dominate local, short-term biological changes. Any underlying signal from climate change is likely to be revealed by analyses that seek systematic trends across diverse species and geographic regions; however, debates within the Intergovernmental Panel on Climate Change (IPCC) reveal several definitions of a 'systematic trend'. Here, we explore these differences, apply diverse analyses to more than 1,700 species, and show that recent biological trends match climate change predictions. Global meta-analyses documented significant range shifts averaging 6.1 km per decade towards the poles (or metres per decade upward), and significant mean advancement of spring events by 2.3 days per decade. We define a diagnostic fingerprint of temporal and spatial 'sign-switching' responses uniquely predicted by twentieth century climate trends. Among appropriate long-term/large-scale/multi-species data sets, this diagnostic fingerprint was found for 279 species. This suite of analyses generates 'very high confidence' (as laid down by the IPCC) that climate change is already affecting living systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Book: found

            The Ecology of Invasions by Animals and Plants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extinction risk from climate change.

              Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.
                Bookmark

                Author and article information

                Journal
                Global Ecology and Biogeography
                Wiley
                1466822X
                February 2012
                February 2012
                May 05 2011
                : 21
                : 2
                : 164-178
                Article
                10.1111/j.1466-8238.2011.00669.x
                f7b2e901-7a98-4371-8436-68a2bbb5efd9
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article