27
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The D614G mutation in SARS-CoV-2 Spike increases transduction of multiple human cell types

      Preprint
      , ,
      bioRxiv

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, a novel isolate of the SARS-CoV-2 virus carrying a point mutation in the Spike protein (D614G) has emerged and rapidly surpassed others in prevalence, including the original SARS-CoV-2 isolate from Wuhan, China. This Spike variant is a defining feature of the most prevalent clade (A2a) of SARS-CoV-2 genomes worldwide. Using phylogenomic data, several groups have proposed that the D614G variant may confer increased transmissibility leading to positive selection, while others have claimed that currently available evidence does not support positive selection. Furthermore, in the A2a clade, this mutation is in linkage disequilibrium with a ORF1b protein variant (P314L), making it difficult to discern the functional significance of the Spike D614G mutation from population genetics alone. Here, we perform site-directed mutagenesis on a human codon-optimized spike protein to introduce the D614G variant and produce SARS-CoV-2-pseudotyped lentiviral particles (S-Virus) with this variant and with D614 Spike. We show that in multiple cell lines, including human lung epithelial cells, that S-Virus carrying the D614G mutation is up to 8-fold more effective at transducing cells than wild-type S-Virus. This provides functional evidence that the D614G mutation in the Spike protein increases transduction of human cells. Further we show that the G614 variant is more resistant to cleavage in vitro and in human cells, which may suggest a possible mechanism for the increased transduction. Given that several vaccines in development and in clinical trials are based on the initial (D614) Spike sequence, this result has important implications for the efficacy of these vaccines in protecting against this recent and highly-prevalent SARS-CoV-2 isolate.

          Related collections

          Author and article information

          Journal
          bioRxiv
          June 15 2020
          Article
          10.1101/2020.06.14.151357
          f7b6fa4b-e7b9-44c6-83b7-a832dbf35858
          © 2020
          History

          Genetics
          Genetics

          Comments

          Comment on this article