19
views
0
recommends
+1 Recommend
0 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      T-cell responses to the M3 immune evasion protein of murid gammaherpesvirus 68 are partially protective and induced with lytic antigen kinetics.

      Journal of Biology
      Animals, Antigens, Viral, immunology, CD8-Positive T-Lymphocytes, Epitope Mapping, Epitopes, T-Lymphocyte, Herpesviridae Infections, prevention & control, Interferon-gamma, biosynthesis, Lung, virology, Mice, Mice, Inbred BALB C, Rhadinovirus, T-Lymphocytes, Vaccines, DNA, administration & dosage, Viral Plaque Assay, Viral Proteins, genetics, Viral Vaccines

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA vaccination with the M3 gene, encoding an immune evasion molecule expressed during both the acute lytic and persistent phases of murid gammaherpesvirus 68 infection, yielded a significantly lower titer of virus in the lung than controls. The protection seen was dependent on T cells, and we mapped an epitope recognized by CD8 T cells. The immune response to this epitope follows the same kinetics as lytic cycle antigens, despite the fact that this gene is expressed in both lytic and persistent stages of infection. This has important implications for our understanding of T-cell responses to putative latency-associated gammaherpesvirus proteins and how vaccination may improve control of these viruses.

          Related collections

          Author and article information

          Comments

          Comment on this article