17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arabidopsis plants acclimated to chronic periodic high light stress attained reproductive phase earlier and showed higher productivity than plants grown under low light.

          Abstract

          This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m −2 s −1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m −2 s −1). However, after 2 weeks of treatment, similar photosynthesis yields ( F v /F m) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark ( qP d) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/ b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings.

          Previous studies have shown that salicylic acid (SA) is an essential component of the plant resistance to pathogens. We now show that SA plays a role in the plant response to adverse environmental conditions, such as salt and osmotic stresses. We have studied the responses of wild-type Arabidopsis and an SA-deficient transgenic line expressing a salicylate hydroxylase (NahG) gene to different abiotic stress conditions. Wild-type plants germinated under moderate light conditions in media supplemented with 100 mM NaCl or 270 mM mannitol showed extensive necrosis in the shoot. In contrast, NahG plants germinated under the same conditions remained green and developed true leaves. The lack of necrosis observed in NahG seedlings under the same conditions suggests that SA potentiates the generation of reactive oxygen species in photosynthetic tissues during salt and osmotic stresses. This hypothesis is supported by the following observations. First, the herbicide methyl viologen, a generator of superoxide radical during photosynthesis, produced a necrotic phenotype only in wild-type plants. Second, the presence of reactive oxygen-scavenging compounds in the germination media reversed the wild-type necrotic phenotype seen under salt and osmotic stress. Third, a greater increase in the oxidized state of the glutathione pool under NaCl stress was observed in wild-type seedlings compared with NahG seedlings. Fourth, greater oxidative damage occurred in wild-type seedlings compared with NahG seedlings under NaCl stress as measured by lipid peroxidation. Our data support a model for SA potentiating the stress response of the germinating Arabidopsis seedling.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Photoinhibition of photosystem I.

            The photoinhibition of Photosystem I (PSI) drew less attention compared with that of Photosystem II (PSII). This could be ascribed to several reasons, e.g. limited combinations of plant species and environmental conditions that cause PSI photoinhibition, the non-regulatory aspect of PSI photoinhibition, and methodological difficulty to determine the accurate activity of PSI under stress conditions. However, the photoinhibition of PSI could be more dangerous than that of PSII because of the very slow recovery rate of PSI. This article is intended to introduce such characteristics of PSI photoinhibition with special emphasis on the relationship between two photosystems as well as the protective mechanism of PSI in vivo. Although the photoinhibition of PSI could be induced only in specific conditions and specific plant species in intact leaves, PSI itself is quite susceptible to photoinhibition in isolated thylakoid membranes. PSI seems to be well protected from photoinhibition in vivo in many plant species and many environmental conditions. This is quite understandable because photoinhibition of PSI is not only irreversible but also the potential cause of many secondary damages. This point would be different from the case of PSII photoinhibition, which could be regarded as one of the regulatory mechanisms under stressed as well as non-stressed conditions. Copyright © Physiologia Plantarum 2010.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oil content of Arabidopsis seeds: the influence of seed anatomy, light and plant-to-plant variation.

              Arabidopsis thaliana is frequently used as a model for the study of oilseed biology and metabolism. However, the very small seeds of Arabidopsis can complicate analysis of their oil content and influence the application of results to larger-seeded plants. Here, we describe how seed anatomy, light, and plant-to-plant variation influence the content and measurement of oil in Arabidopsis seeds. The anatomy of Arabidopsis and Brassica napus seeds were compared and the distribution of mass, oil and the fatty acid composition of different seed parts were determined. In Brassica, 90% of the seed oil resides in the cotyledons that contribute 74% of seed mass. By contrast, the values for Arabidopsis are 60% and 45%, respectively, with a higher fraction of the oil deposited in the radicle, hypocotyl, endosperm and seed coat. Growth of Arabidopsis plants with 600 micromol m(-2) s(-1) light resulted in a two-fold higher seed yield, a 40% increase in mass per seed and a 60% increase in oil per seed compared to growth at 100 micromol m(-2) s(-1). Factors that influence the analysis of oil content were evaluated. Intact-seed transmethylation followed by gas chromatography (GC) analysis provided reproducible analysis of Arabidopsis seed oil. However, plant-to-plant variation in oil content is large and we analyzed how this influences the ability to detect statistically valid changes in oil between different genotypes. These observations establish a reference data set on the fatty acid composition and distribution of mass and oil between tissues of Arabidopsis seeds that should help to predict the applicability of results obtained with Arabidopsis to other oilseeds.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                10 July 2017
                29 June 2017
                29 June 2017
                : 68
                : 15
                : 4249-4262
                Affiliations
                [1 ]School of Biological and Chemical Sciences, Queen Mary University of London, UK
                [2 ]Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
                Author notes
                Author information
                http://orcid.org/0000-0001-8554-0249
                Article
                erx213
                10.1093/jxb/erx213
                5853873
                28922753
                f7d3ba57-6c5a-4384-9d44-8e855935bec2
                © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 January 2017
                : 31 May 2017
                Page count
                Pages: 14
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Funded by: China Scholarship Council 10.13039/501100004543
                Award ID: 201406730018
                Categories
                Research Papers
                Photosynthesis and Metabolism

                Plant science & Botany
                acclimation,arabidopsis,periodic high light exposure,photoinhibition,photosynthesis,protective non-photochemical quenching

                Comments

                Comment on this article