175
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The importance of the viable but non-culturable state in human bacterial pathogens

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many bacterial species have been found to exist in a viable but non-culturable (VBNC) state since its discovery in 1982. VBNC cells are characterized by a loss of culturability on routine agar, which impairs their detection by conventional plate count techniques. This leads to an underestimation of total viable cells in environmental or clinical samples, and thus poses a risk to public health. In this review, we present recent findings on the VBNC state of human bacterial pathogens. The characteristics of VBNC cells, including the similarities and differences to viable, culturable cells and dead cells, and different detection methods are discussed. Exposure to various stresses can induce the VBNC state, and VBNC cells may be resuscitated back to culturable cells under suitable stimuli. The conditions that trigger the induction of the VBNC state and resuscitation from it are summarized and the mechanisms underlying these two processes are discussed. Last but not least, the significance of VBNC cells and their potential influence on human health are also reviewed.

          Related collections

          Most cited references196

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological heterogeneity in biofilms.

          Biofilms contain bacterial cells that are in a wide range of physiological states. Within a biofilm population, cells with diverse genotypes and phenotypes that express distinct metabolic pathways, stress responses and other specific biological activities are juxtaposed. The mechanisms that contribute to this genetic and physiological heterogeneity include microscale chemical gradients, adaptation to local environmental conditions, stochastic gene expression and the genotypic variation that occurs through mutation and selection. Here, we discuss the processes that generate chemical gradients in biofilms, the genetic and physiological responses of the bacteria as they adapt to these gradients and the techniques that can be used to visualize and measure the microscale physiological heterogeneities of bacteria in biofilms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            (p)ppGpp: still magical?

            The fundamental details of how nutritional stress leads to elevating (p)ppGpp are questionable. By common usage, the meaning of the stringent response has evolved from the specific response to (p)ppGpp provoked by amino acid starvation to all responses caused by elevating (p)ppGpp by any means. Different responses have similar as well as dissimilar positive and negative effects on gene expression and metabolism. The different ways that different bacteria seem to exploit their capacities to form and respond to (p)ppGpp are already impressive despite an early stage of discovery. Apparently, (p)ppGpp can contribute to regulation of many aspects of microbial cell biology that are sensitive to changing nutrient availability: growth, adaptation, secondary metabolism, survival, persistence, cell division, motility, biofilms, development, competence, and virulence. Many basic questions still exist. This review tries to focus on some issues that linger even for the most widely characterized bacterial strains.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent findings on the viable but nonculturable state in pathogenic bacteria.

              Many bacteria, including a variety of important human pathogens, are known to respond to various environmental stresses by entry into a novel physiological state, where the cells remain viable, but are no longer culturable on standard laboratory media. On resuscitation from this 'viable but nonculturable' (VBNC) state, the cells regain culturability and the renewed ability to cause infection. It is likely that the VBNC state is a survival strategy, although several interesting alternative explanations have been suggested. This review describes the VBNC state, the various chemical and physical factors known to induce cells into this state, the cellular traits and gene expression exhibited by VBNC cells, their antibiotic resistance, retention of virulence and ability to attach and persist in the environment, and factors that have been found to allow resuscitation of VBNC cells. Along with simple reversal of the inducing stresses, a variety of interesting chemical and biological factors have been shown to allow resuscitation, including extracellular resuscitation-promoting proteins, a novel quorum-sensing system (AI-3) and interactions with amoeba. Finally, the central role of catalase in the VBNC response of some bacteria, including its genetic regulation, is described.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                02 June 2014
                2014
                : 5
                : 258
                Affiliations
                [1] 1Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University Ste-Anne-de-Bellevue, QC, Canada
                [2] 2Department of Biology, University of North Carolina at Charlotte Charlotte, NC, USA
                Author notes

                Edited by: Mickael Desvaux, INRA, France

                Reviewed by: Efstathios D. Giaouris, University of the Aegean, Greece; Akos T. Kovacs, Friedrich Schiller University of Jena, Germany; Joana Azeredo, University of Minho, Portugal

                *Correspondence: Sebastien P. Faucher, Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Montreal, QC H9X 3V9, Canada e-mail: sebastien.faucher2@ 123456mcgill.ca

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00258
                4040921
                24917854
                f7e089e2-943e-43c0-a430-0753931e4942
                Copyright © 2014 Li, Mendis, Trigui, Oliver and Faucher.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 March 2014
                : 12 May 2014
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 224, Pages: 20, Words: 19901
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                vbnc,stress,resuscitation,virulence,human pathogens,biofilm,antibiotic
                Microbiology & Virology
                vbnc, stress, resuscitation, virulence, human pathogens, biofilm, antibiotic

                Comments

                Comment on this article