20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homodimeric class I cytokine receptors are assumed to exist as preformed dimers that are activated by ligand-induced conformational changes. We quantified the dimerization of three prototypic class I cytokine receptors in the plasma membrane of living cells by single-molecule fluorescence microscopy. Spatial and spatiotemporal correlation of individual receptor subunits showed ligand-induced dimerization and revealed that the associated Janus kinase 2 (JAK2) dimerizes through its pseudokinase domain. Oncogenic receptor and hyperactive JAK2 mutants promoted ligand-independent dimerization, highlighting the formation of receptor dimers as the switch responsible for signal activation. Atomistic modeling and molecular dynamics simulations based on a detailed energetic analysis of the interactions involved in dimerization yielded a mechanistic blueprint for homodimeric class I cytokine receptor activation and its dysregulation by individual mutations.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          CHARMM-GUI: a web-based graphical user interface for CHARMM.

          CHARMM is an academic research program used widely for macromolecular mechanics and dynamics with versatile analysis and manipulation tools of atomic coordinates and dynamics trajectories. CHARMM-GUI, http://www.charmm-gui.org, has been developed to provide a web-based graphical user interface to generate various input files and molecular systems to facilitate and standardize the usage of common and advanced simulation techniques in CHARMM. The web environment provides an ideal platform to build and validate a molecular model system in an interactive fashion such that, if a problem is found through visual inspection, one can go back to the previous setup and regenerate the whole system again. In this article, we describe the currently available functional modules of CHARMM-GUI Input Generator that form a basis for the advanced simulation techniques. Future directions of the CHARMM-GUI development project are also discussed briefly together with other features in the CHARMM-GUI website, such as Archive and Movie Gallery. 2008 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Modulation of protein properties in living cells using nanobodies.

            Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a factor of 5, whereas its displacement by a second nanobody caused an increase by a factor of 10. Structural analysis of GFP-nanobody complexes revealed that the two nanobodies induce subtle opposing changes in the chromophore environment, leading to altered absorption properties. Unlike conventional antibodies, the small, stable nanobodies are functional in living cells. Nanobody-induced changes were detected by ratio imaging and used to monitor protein expression and subcellular localization as well as translocation events such as the tamoxifen-induced nuclear localization of estrogen receptor. This work demonstrates that protein conformations can be manipulated and studied with nanobodies in living cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes.

              Although the highly dynamic and mosaic organization of the plasma membrane is well-recognized, depicting a resolved, global view of this organization remains challenging. We present an analytical single-particle tracking (SPT) method and tool, multiple-target tracing (MTT), that takes advantage of the high spatial resolution provided by single-fluorophore sensitivity. MTT can be used to generate dynamic maps at high densities of tracked particles, thereby providing global representation of molecular dynamics in cell membranes. Deflation by subtracting detected peaks allows detection of lower-intensity peaks. We exhaustively detected particles using MTT, with performance reaching theoretical limits, and then reconnected trajectories integrating the statistical information from past trajectories. We demonstrate the potential of this method by applying it to the epidermal growth factor receptor (EGFR) labeled with quantum dots (Qdots), in the plasma membrane of live cells. We anticipate the use of MTT to explore molecular dynamics and interactions at the cell membrane.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                February 06 2020
                February 07 2020
                February 06 2020
                February 07 2020
                : 367
                : 6478
                : 643-652
                Article
                10.1126/science.aaw3242
                32029621
                f7e236f9-547e-4872-ab6b-f3bc0cf7163f
                © 2020

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article