71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level.

          Author Summary

          Rabbit hemorrhagic disease virus (RHDV), detected as late as 1984, has spread to large parts of the world, threatening rabbit populations and other species dependent on rabbits in many European countries. Mortality has been shown to be as high as 90% and rabbits are killed 48 to 72 hours after infection. Related viruses called noroviruses, infect humans in a manner dependent on the expression of histo-blood group antigens (HBGAs), which are not only expressed on red blood cells, but also on epithelial cells, in saliva and on mucins of the intestinal tract. RHDV also binds to HBGA and in this report we characterize binding of strains of all genetic groups of RHDV to different HBGAs. We also demonstrate HBGAs to function as attachment factors in a challenge experiment. As polymorphisms of genes involved in HBGA synthesis divide the rabbit population into different subgroups, we find selection of low-binding subgroups of wild rabbits in populations recovering from devastating outbreaks of RHDV. This is the first demonstration of differential HBGA specificities of RHDV strains, description of function in infection and demonstration of host selection due to RHDV infection based on HBGA phenotype.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Concerted and birth-and-death evolution of multigene families.

          Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Norovirus gastroenteritis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans.

              Mass spectrometry is the main analytical technique currently used to address the challenges of glycomics as it offers unrivalled levels of sensitivity and the ability to handle complex mixtures of different glycan variations. Determination of glycan structures from analysis of MS data is a major bottleneck in high-throughput glycomics projects, and robust solutions to this problem are of critical importance. However, all the approaches currently available have inherent restrictions to the type of glycans they can identify, and none of them have proved to be a definitive tool for glycomics. GlycoWorkbench is a software tool developed by the EUROCarbDB initiative to assist the manual interpretation of MS data. The main task of GlycoWorkbench is to evaluate a set of structures proposed by the user by matching the corresponding theoretical list of fragment masses against the list of peaks derived from the spectrum. The tool provides an easy to use graphical interface, a comprehensive and increasing set of structural constituents, an exhaustive collection of fragmentation types, and a broad list of annotation options. The aim of GlycoWorkbench is to offer complete support for the routine interpretation of MS data. The software is available for download from: http://www.eurocarbdb.org/applications/ms-tools.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2011
                August 2011
                25 August 2011
                : 7
                : 8
                : e1002188
                Affiliations
                [1 ]INSERM, U892, Université de Nantes, Nantes, France
                [2 ]Anses, Laboratoire de Ploufragan/Plouzané, Unité de Virologie, Immunologie, Parasitologie Aviaires et Cunicoles, Ploufragan, France
                [3 ]Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
                [4 ]CIBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
                [5 ]CITS, Centro de Investigacao em Tecnologias de Saude, CESPU, Gandra, Portugal
                [6 ]Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia
                [7 ]Invasive Animals Cooperative Research Centre, Canberra, Australia
                [8 ]Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, Nantes, France
                University of North Carolina at Chapel Hill, United States of America
                Author notes

                Conceived and designed the experiments: KN GLGR NRC PJE AD SMH JLP. Performed the experiments: KN PG JA NRC BLMV AML. Analyzed the data: KN GLGR JA NRC PJE SM TS AD SMH JLP. Contributed reagents/materials/analysis tools: GLGR NRC TS SM PJE. Wrote the paper: KN JLP GLGR JA PJE TS SM AD SMH.

                Article
                PPATHOGENS-D-11-00535
                10.1371/journal.ppat.1002188
                3161982
                21901093
                f7e7e4b2-b2da-41e4-9a5b-7eba6953191e
                Nyström et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 March 2011
                : 13 June 2011
                Page count
                Pages: 22
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Genetics
                Microbiology
                Emerging Infectious Diseases
                Host-Pathogen Interaction
                Microbial Pathogens
                Virology
                Veterinary Science
                Animal Management
                Veterinary Diseases
                Veterinary Microbiology

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article