23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      On the instability of geostrophic vortices

      Journal of Fluid Mechanics
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The instabilities of barotropic and baroclinic, quasi-geostrophic, f-plane, circular vortices are found using a linearized contour dynamics model. We model the vortex using a circular region of horizontally uniform potential vorticity surrounded by an annulus of uniform, but different, potential vorticity. We concentrate mostly upon isolated vortices with no circulation in the basic state outside the outer radius b. In addition to linear analyses, we also consider weakly nonlinear waves. The amplitude equation has a cubic nonlinearity and, depending upon the sign of the coefficient of the cubic term, may give nonlinear stabilization or nonlinear enhancement of the growth. Barotropic isolated eddies are unstable when the outer annulus is narrow enough; on the other hand, if the scale of the whole vortex is sufficiently small compared to the radius of deformation of a baroclinic mode, the break up may be preferentially to a depth-varying disturbance corresponding to a twisting and tilting of the vortex. As the vortex becomes more baroclinic, we find that large-scale vortices show an elliptical mode baroclinic instability as well which is relatively insensitive to the scale of the outer annulus. When the baroclinic currents in the basic state dominate, the twisting mode disappears, and we see only the instabilities associated with either strong enough shear in the annular region or sufficiently large vortices compared with the deformation radius. The finite amplitude results show that the baroclinic instability mode for large enough vortices is nonlinearly stabilized while in most cases, the other two kinds of instability are nonlinearly destabilized.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Book: not found

          The operated Markov´s chains in economy (discrete chains of Markov with the income)

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the use and significance of isentropic potential vorticity maps

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Contour dynamics for the Euler equations in two dimensions

                Bookmark

                Author and article information

                Journal
                Journal of Fluid Mechanics
                J. Fluid Mech.
                Cambridge University Press (CUP)
                0022-1120
                1469-7645
                December 1988
                April 21 2006
                December 1988
                : 197
                : 349-388
                Article
                10.1017/S0022112088003283
                f7f23833-d8fe-48c5-a9e7-067669d81f30
                © 1988

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article