+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Urokinase Plasminogen Activator in Injured Adventitia Increases the Number of Myofibroblasts and Augments Early Proliferation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Myofibroblasts are involved in vessel remodeling during the development of hypertension as well as after angioplasty and aortocoronary grafting, but the mechanisms of myofibroblastic phenotypic modulation are not fully elucidated. We assessed the role of urokinase plasminogen activator (uPA) and its proteolytic activity in myofibroblast differentiation and the early proliferation following mechanical injury of the rat carotid adventitia. The effects of perivascular application of recombinant uPA (r-uPA), proteolytically inactive r-uPA(H/Q) and uPA neutralizing antibody were evaluated 4 days after surgical injury to the adventitia. The phenotype of adventitial cells was assessed using anti-α-smooth muscle actin (α-SM actin) antibody, anti-SM heavy chain myosin, anti-high-molecular-weight caldesmon, anti-smoothelin and anti-ED-1 antibodies, proliferation by the expression of proliferating cell nuclear antigen, and the size of the adventitia by quantitative morphometry. Four days after injury, the intensive immunostaining for urokinase appeared in the rat carotid artery adventitia. At the same time, the frequency of α-SM actin-positive adventitial cells was 1.8 ± 1.1% in uninjured arteries and 25.2 ± 5.4% in injured arteries (p < 0.05), and the respective frequency of ED-1-positive cells 1.5 ± 1.1 and 25.0 ± 5.2%. The application of exogenous r-uPA doubled the numbers of α-SM actin-positive adventitial cells to 55.7 ± 6.8% (p < 0.05). ED-1-positive cells and proliferating cell nuclear antigen-positive cells as well as the size of the adventitia were also significantly increased after r-uPA compared with injury alone. In contrast, the proteolytically inactive r-uPA(H/Q) did not affect any parameters. The application of uPA neutralizing antibody attenuated the frequency of α-SM actin-positive cells to 12.6 ± 3.5% (p < 0.05), the frequency of ED-1-positive cells, and the numbers of adventitial cells. r-uPA stimulation of cultured human skin fibroblasts significantly increased the α-SM actin content in a concentration-dependent manner. In contrast, r-uPA(H/Q) did not induce changes in α-SM actin content. We conclude that uPA, which is upregulated in the injured adventitia, can augment adventitial cell accumulation, including myofibroblasts, and adventitia growth early after injury of the rat carotid artery adventitia by mechanisms involving proteolysis.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          The myofibroblast in wound healing and fibrocontractive diseases.

           G Gabbiani (2003)
          The demonstration that fibroblastic cells acquire contractile features during the healing of an open wound, thus modulating into myofibroblasts, has open a new perspective in the understanding of mechanisms leading to wound closure and fibrocontractive diseases. Myofibroblasts synthesize extracellular matrix components such as collagen types I and III and during normal wound healing disappear by apoptosis when epithelialization occurs. The transition from fibroblasts to myofibroblasts is influenced by mechanical stress, TGF-beta and cellular fibronectin (ED-A splice variant). These factors also play important roles in the development of fibrocontractive changes, such as those observed in liver cirrhosis, renal fibrosis, and stroma reaction to epithelial tumours. Copyright 2003 John Wiley & Sons, Ltd.
            • Record: found
            • Abstract: not found
            • Article: not found

            Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction.

              • Record: found
              • Abstract: found
              • Article: not found

              Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation.

              The molecular mechanisms predisposing to atherosclerotic aneurysm formation remain undefined. Nevertheless, rupture of aortic aneurysms is a major cause of death in Western societies, with few available treatments and poor long-term prognosis. Indirect evidence suggests that matrix metalloproteinases (MMPs) and plasminogen activators (PAs) are involved in its pathogenesis. MMPs are secreted as inactive zymogens (pro-MMPs), requiring activation in the extracellular compartment. Plasmin, generated from the zymogen plasminogen by tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA; refs 14,15), has been proposed as a possible activator in vitro, but evidence for such a role in vivo is lacking. Analysis of atherosclerotic aorta in mice with a deficiency of apoliprotein E (Apoe-/-; ref. 18), singly or combined with a deficiency of t-PA (Apoe-/-:Plat-/-) or of u-PA (Apoe-/-:Plau-/-; ref. 19), indicated that deficiency of u-PA protected against media destruction and aneurysm formation, probably by means of reduced plasmin-dependent activation of pro-MMPs. This genetic evidence suggests that plasmin is a pathophysiologically significant activator of pro-MMPs in vivo and may have implications for the design of therapeutic strategies to prevent aortic-wall destruction by controlling Plau gene function.

                Author and article information

                J Vasc Res
                Journal of Vascular Research
                S. Karger AG
                September 2006
                20 September 2006
                : 43
                : 5
                : 437-446
                aCardiology Research Centre, Moscow, Russia, and bBaker Medical Research Institute, Alfred Hospital, Melbourne, Australia
                94906 J Vasc Res 2006;43:437–446
                © 2006 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 1, References: 48, Pages: 10
                Research Paper


                Comment on this article