Organic preservation of non-mineralizing animals constitutes an important part of the paleontological record, yet the processes involved have not been investigated in detail. Organic-walled fossils are generally explicable as a coincidence of original, relatively recalcitrant, extra-cellular materials and more or less anti-biotic depositional circumstances. One of the most pervasive natural inhibitors of biodegradation results from substrate and enzyme adsorption onto, and within, clay minerals; such interactions are likely responsible for many of the organic-walled fossils preserved in clastic sediments. Close examination of the fossilLagerstätteof the Burgess Shale (Middle Cambrian, British Columbia) reveals that most of its so-called soft-bodied fossils are composed of primary (although kerogenized) organic carbon. Their preservation can be attributed to pervasive clay-organic interactions as the organisms were transported in a moving sediment cloud and buried with all cavities and spaces permeated with fine grained clays. The organic-walled Burgess Shale fossils were studied both in petrographic thin section and isolated from the rock matrix, following careful acid maceration. Isotopic analysis of bulk organic and carbonate carbon yielded values consistent with a normal marine paleoenvironment. Anatomical and histological consideration of the enigmatic Burgess wormAmiskwiasuggest that it may in fact be a chaetognath, while the putative chordatePikaiaappears not to be related to modern cephalochordates.