88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Concentration, motility and morphology are parameters commonly used to determine the fertilization potential of an ejaculate. These parameters give a general view on the quality of sperm but do not provide information about one of the most important components of the reproductive outcome: DNA. Either single or double DNA strand breaks can set the difference between fertile and infertile males. Sperm DNA fragmentation can be caused by intrinsic factors like abortive apoptosis, deficiencies in recombination, protamine imbalances or oxidative stress. Damage can also occur due to extrinsic factors such as storage temperatures, extenders, handling conditions, time after ejaculation, infections and reaction to medicines or post-testicular oxidative stress, among others. Two singular characteristics differentiate sperm from somatic cells: Protamination and absence of DNA repair. DNA repair in sperm is terminated as transcription and translation stops post-spermiogenesis, so these cells have no mechanism to repair the damage occurred during their transit through the epididymis and post-ejaculation. Oocytes and early embryos have been shown to repair sperm DNA damage, so the effect of sperm DNA fragmentation depends on the combined effects of sperm chromatin damage and the capacity of the oocyte to repair it. In this contribution we review some of these issues.

          Related collections

          Most cited references146

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin

          DNA double-strand breaks (DSBs) are extremely dangerous lesions with severe consequences for cell survival and the maintenance of genomic stability. In higher eukaryotic cells, DSBs in chromatin promptly initiate the phosphorylation of the histone H2A variant, H2AX, at Serine 139 to generate γ-H2AX. This phosphorylation event requires the activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs, ATM, and ATR, and serves as a landing pad for the accumulation and retention of the central components of the signaling cascade initiated by DNA damage. Regions in chromatin with γ-H2AX are conveniently detected by immunofluorescence microscopy and serve as beacons of DSBs. This has allowed the development of an assay that has proved particularly useful in the molecular analysis of the processing of DSBs. Here, we first review the role of γ-H2AX in DNA damage response in the context of chromatin and discuss subsequently the use of this modification as a surrogate marker for mechanistic studies of DSB induction and processing. We conclude with a critical analysis of the strengths and weaknesses of the approach and present some interesting applications of the resulting methodology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathways of DNA double-strand break repair during the mammalian cell cycle.

            Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The biology of infertility: research advances and clinical challenges.

              Reproduction is required for the survival of all mammalian species, and thousands of essential 'sex' genes are conserved through evolution. Basic research helps to define these genes and the mechanisms responsible for the development, function and regulation of the male and female reproductive systems. However, many infertile couples continue to be labeled with the diagnosis of idiopathic infertility or given descriptive diagnoses that do not provide a cause for their defect. For other individuals with a known etiology, effective cures are lacking, although their infertility is often bypassed with assisted reproductive technologies (ART), some accompanied by safety or ethical concerns. Certainly, progress in the field of reproduction has been realized in the twenty-first century with advances in the understanding of the regulation of fertility, with the production of over 400 mutant mouse models with a reproductive phenotype and with the promise of regenerative gonadal stem cells. Indeed, the past six years have witnessed a virtual explosion in the identification of gene mutations or polymorphisms that cause or are linked to human infertility. Translation of these findings to the clinic remains slow, however, as do new methods to diagnose and treat infertile couples. Additionally, new approaches to contraception remain elusive. Nevertheless, the basic and clinical advances in the understanding of the molecular controls of reproduction are impressive and will ultimately improve patient care.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                2012
                31 October 2012
                : 13
                : 11
                : 14026-14052
                Affiliations
                [1 ]Sexing Technologies, 22575 State Highway 6 South, Navasota, TX 77868, USA; E-Mail: cgonzalez@ 123456sexingtechnologies.com
                [2 ]Biology Department, Universidad Autonoma of Madrid, C/ Darwin nº 2. 28049 Madrid, Spain; E-Mail: jaime.gosalvez@ 123456uam.es
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: rosa.roy@ 123456uam.es ; Tel.: +34-91-497-2606; Fax: +34-91-497-8344.
                Article
                ijms-13-14026
                10.3390/ijms131114026
                3509564
                23203048
                f80d1cb3-7eff-4993-9f8d-674a1c203377
                © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0).

                History
                : 31 July 2012
                : 16 October 2012
                : 18 October 2012
                Categories
                Review

                Molecular biology
                oocyte,sperm,infertility,dna repair,dna fragmentation
                Molecular biology
                oocyte, sperm, infertility, dna repair, dna fragmentation

                Comments

                Comment on this article