18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Graphite Nanoplatelet Modified Epoxy Resin for Carbon Fibre Reinforced Plastics with Enhanced Properties

      , , , ,
      Journal of Nanomaterials
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A simple approach to deliver graphene or graphite nanoplatelets (GNPs) into carbon fibre reinforced plastic (CFRPs) to enhance the multifunctional properties of carbon/epoxy laminates was demonstrated. GNPs improved the typically low interlaminar mechanical, thermal, and electrical properties of CFRPs after direct vacuum infusion of GNP doped resin obtained via in situ exfoliation by three-roll milling (TRM). Compared to high shear mixing or probe ultrasonication, TRM produces higher shear rates and stresses to exfoliate and finely disperse GNP particles within an epoxy matrix. This environmentally friendly and industrial scalable process does not require the use of solvents, additives, or chemical treatments. The flexural modulus and interlaminar shear strength (ILSS) of CFRPs was increased by 15% and by 18%, respectively, with the addition of 5 wt.% in situ exfoliated GNP in the doped epoxy resin. Out-of-plane electrical and thermal conductivity, at the same filler content, were, respectively, improved by nearly two orders of magnitude and 50%.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: not found
          • Article: not found

          Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet - Carbon Nanotube Filler for Epoxy Composites

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites.

            We report an approach to the development of advanced structural composites based on engineered multiscale carbon nanotube-carbon fiber reinforcement. Electrophoresis was utilized for the selective deposition of multi- and single-walled carbon nanotubes (CNTs) on woven carbon fabric. The CNT-coated carbon fabric panels were subsequently infiltrated with epoxy resin using vacuum-assisted resin transfer molding (VARTM) to fabricate multiscale hybrid composites in which the nanotubes were completely integrated into the fiber bundles and reinforced the matrix-rich regions. The carbon nanotube/carbon fabric/epoxy composites showed approximately 30% enhancement of the interlaminar shear strength as compared to that of carbon fiber/epoxy composites without carbon nanotubes and demonstrate significantly improved out-of-plane electrical conductivity.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Growth, Structure, and Properties of Graphite Whiskers

                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2017
                2017
                : 2017
                :
                : 1-10
                Article
                10.1155/2017/5194872
                f8161018-991c-4992-8282-f19ee06873da
                © 2017

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article