17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Detection of a Tyrosine Phosphatase LAR on Intestinal Epithelial Cells and Intraepithelial Lymphocytes in the Human Duodenum

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of tyrosine phosphorylation in the human duodenum have indicated that proliferating cells in the middle portion of the duodenal crypt were devoid of this feature, suggesting that tyrosine kinase activation is not a dominant factor in crypt cell proliferation, and that consequently tyrosine phosphatase activity may be a more critical factor in crypt cell development. We investigated the expression of the leukocyte common antigen-related receptor (LAR) family of tyrosine phosphatases. A flow cytometry system was used to examine cells from the surface, mid-portion, and lower part of the crypt. Individual cell populations were immunostained with anti-LAR antibodies using phycoerythrin-conjugated anti-CD3 to discriminate between epithelial cells (CD3 ) and intraepithelial lymphocytes (CD3 +). Epithelial cells expressed LAR throughout the crypt. Expression of LAR was maximal in the mid-portion of the crypt with lower expression at the top of the villi. Intraepithelial lymphocytes expressed low levels of LAR at the tips of the villi with stronger expression extending towards the base of the crypt. These findings were confirmed by immunohistochemistry on paraffin-fixed sections. Of note, peripheral blood lymphocytes expressed less LAR than IEL. These observations suggest the possibility that tyrosine phosphatase LAR may be of importance in the regulation of crypt cell proliferation. Moreover, as the extracellular domain of LAR has homology with adhesion molecules, the finding of this molecule on IEL could suggest a possible functional role in homing of this unique lymphocyte.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Integrins and signal transduction pathways: the road taken.

          Adhesive interactions play critical roles in directing the migration, proliferation, and differentiation of cells; aberrations in such interactions can lead to pathological disorders. These adhesive interactions, mediated by cell surface receptors that bind to ligands on adjacent cells or in the extracellular matrix, also regulate intracellular signal transduction pathways that control adhesion-induced changes in cell physiology. Though the extracellular molecular interactions involving many adhesion receptors have been well characterized, the adhesion-dependent intracellular signaling events that regulate these physiological alterations have only begun to be elucidated. This article will focus on recent advances in our understanding of intracellular signal transduction pathways regulated by the integrin family of adhesion receptors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype.

            Gene targeting was used to create a null allele at the epidermal growth factor receptor locus (Egfr). The phenotype was dependent on genetic background. EGFR deficiency on a CF-1 background resulted in peri-implantation death due to degeneration of the inner cell mass. On a 129/Sv background, homozygous mutants died at mid-gestation due to placental defects; on a CD-1 background, the mutants lived for up to 3 weeks and showed abnormalities in skin, kidney, brain, liver, and gastrointestinal tract. The multiple abnormalities associated with EGFR deficiency indicate that the receptor is involved in a wide range of cellular activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly

              Cells in culture reveal high levels of protein tyrosine phosphorylation in their focal adhesions, the regions where cells adhere to the underlying substratum. We have examined the tyrosine phosphorylation of proteins in response to plating cells on extracellular matrix substrata. Rat embryo fibroblasts, mouse Balb/c 3T3, and NIH 3T3 cells plated on fibronectin-coated surfaces revealed elevated phosphotyrosine levels in a cluster of proteins between 115 and 130 kD. This increase in tyrosine phosphorylation was also seen when rat embryo fibroblasts were plated on laminin or vitronectin, but not on polylysine or on uncoated plastic. Integrin mediation of this effect was suggested by finding the same pattern of elevated tyrosine phosphorylation in cells plated on the cell-binding fragment of fibronectin and in cells plated on a synthetic polymer containing multiple RGD sequences. We have identified one of the proteins of the 115-130-kD cluster as pp125FAK, a tyrosine kinase recently localized in focal adhesions (Schaller, M. D., C. A. Borgman, B. S. Cobb, R. R. Vines, A. B. Reynolds, and J. T. Parsons. 1992. Proc. Natl. Acad. Sci. USA. 89:5192). A second protein that becomes tyrosine phosphorylated in response to extracellular matrix adhesion is identified as paxillin, a 70-kD protein previously localized to focal adhesions. Treatment of cells with the tyrosine kinase inhibitor herbimycin A diminished the adhesion-induced tyrosine phosphorylation of these proteins and inhibited the formation of focal adhesions and stress fibers. These results suggest a role for integrin- mediated tyrosine phosphorylation in the organization of the cytoskeleton as cells adhere to the extracellular matrix.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                24 February 2005
                : 2005
                : 1
                : 23-30
                Affiliations
                1Department of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Saint James Hospital, Dublin 8, Ireland
                2Department of Histopathology, Institute of Molecular Medicine, Trinity Centre for Health Sciences, Saint James Hospital, Dublin 8, Ireland
                Author notes
                * Dermot P. Kelleher; dermot.kelleher@ 123456tcd.ie
                Article
                10.1155/MI.2005.23
                1513056
                15770063
                f824f0b9-fa9d-4c84-9602-c8152200848a
                Hindawi Publishing Corporation
                History
                : 28 September 2004
                : 2 November 2004
                Categories
                Research Communication

                Immunology
                Immunology

                Comments

                Comment on this article