33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Network statistics of genetically-driven gene co-expression modules in mouse crosses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS). For six out of the 7 networks, we found that linkage to “module QTLs” (mQTLs) could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as “genetically-driven”) had network statistic properties (density and centralization) that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          The transcriptional network for mesenchymal transformation of brain tumors

          Inference of transcriptional networks that regulate transitions into physiologic or pathologic cellular states remains a central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumor aggressiveness in human malignant glioma but the regulatory programs responsible for implementing the associated molecular signature are largely unknown. Here, we show that reverse-engineering and unbiased interrogation of a glioma-specific regulatory network reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription factors (C/EBPβ and Stat3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic co-expression of C/EBPβ and Stat3 reprograms neural stem cells along the aberrant mesenchymal lineage whereas elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumor aggressiveness. In human glioma, expression of C/EBPβ and Stat3 correlates with mesenchymal differentiation and predicts poor clinical outcome. These results reveal that activation of a small regulatory module is necessary and sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combining probability from independent tests: the weighted Z-method is superior to Fisher's approach.

            The most commonly used method in evolutionary biology for combining information across multiple tests of the same null hypothesis is Fisher's combined probability test. This note shows that an alternative method called the weighted Z-test has more power and more precision than does Fisher's test. Furthermore, in contrast to some statements in the literature, the weighted Z-method is superior to the unweighted Z-transform approach. The results in this note show that, when combining P-values from multiple tests of the same hypothesis, the weighted Z-method should be preferred.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Common disorders are quantitative traits.

              After drifting apart for 100 years, the two worlds of genetics - quantitative genetics and molecular genetics - are finally coming together in genome-wide association (GWA) research, which shows that the heritability of complex traits and common disorders is due to multiple genes of small effect size. We highlight a polygenic framework, supported by recent GWA research, in which qualitative disorders can be interpreted simply as being the extremes of quantitative dimensions. Research that focuses on quantitative traits - including the low and high ends of normal distributions - could have far-reaching implications for the diagnosis, treatment and prevention of the problematic extremes of these traits.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                11 October 2013
                26 December 2013
                2013
                : 4
                : 291
                Affiliations
                [1] 1Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal Montreál, QC, Canada
                [2] 2Bioinformatics and Computational Genomics Research Unit, Institut de Recherches Cliniques de Montréal Montreál, QC, Canada
                Author notes

                Edited by: Frank Emmert-Streib, Queen's University Belfast, UK

                Reviewed by: Xia Yang, University of California Los Angeles, USA; Matthias Dehmer, UMIT - University for Health Sciences, Medical Informatics and Technology, Austria

                *Correspondence: Christian F. Deschepper, Cardiovascular Biology Research Unit, Institut de Recherches Cliniques de Montréal, Université de Montréal, 110 Avenue des Pins, Montreál, QC H2W 1R7, Canada e-mail: christian.deschepper@ 123456ircm.qc.ca

                This article was submitted to Bioinformatics and Computational Biology, a section of the journal Frontiers in Genetics.

                Article
                10.3389/fgene.2013.00291
                3872724
                24421784
                f82ba404-e7f7-44a3-a01b-4137d17fef87
                Copyright © 2013 Scott-Boyer, Haibe-Kains and Deschepper.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 September 2013
                : 29 November 2013
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 22, Pages: 7, Words: 4885
                Categories
                Genetics
                Original Research Article

                Genetics
                gene co-expression modules,chromosome domain,genetics,network inference,mouse recombinant inbred strains

                Comments

                Comment on this article