13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Comparison of DNA damage in human-derived hepatoma line (HepG2) exposed to the fifteen drinking water disinfection byproducts using the single cell gel electrophoresis assay

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disinfection of drinking water reduces pathogenic infection, but generates disinfection by-products (DBPs) in drinking water. In this study, the effect of fifteen DBPs on DNA damage in human-derived hepatoma line (HepG2) was investigated by the single cell gel electrophoresis (SCGE) assay. These fifteen DBPs are: four trihalomethanes (THMs), six haloacetic acides (HAAs), three haloacetonitriles (HANs), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), and chloral hydrate (CH). Based on the minimal effective concentration (MEC) at which DBPs induced significant increase in olive tail moment (OTM), the rank order of DNA-damaging potency is: bromodichloromethane (BDCM)>dibromochloromethane (DBCM)>tribromomethane (TBM)>trichloromethane (TCM) of the four THMs; iodoacetic acid (IA)>bromoacetic acid (BA)>dibromoacetic acid (DBA)>dichloracetic acid (DCA)>trichloroacetic acid (TCA) of the five HAAs; dibromoacetonitrile (DBN)approximately dichloroacetonitrile (DCN)>trichloroacetonitrile (TCN) of the three HANs. The DNA damaging potency of MX and CH is similar to TCA and DCA, respectively. IA is the most genotoxic DBP in the fifteen DBPs, followed by BA. Chloroacetic acid (CA) is not genotoxic in this assay. Our findings indicated that HepG2/SCGE is a sensitive tool to evaluate the genotoxicity of DBPs and iodinated DBPs are more genotoxic than brominated DBPs, but chlorinated DBPs are less genotoxic than brominated DBPs.

          Related collections

          Author and article information

          Journal
          Mutation Research/Genetic Toxicology and Environmental Mutagenesis
          Mutation Research/Genetic Toxicology and Environmental Mutagenesis
          Elsevier BV
          13835718
          January 2012
          January 2012
          : 741
          : 1-2
          : 89-94
          Article
          10.1016/j.mrgentox.2011.11.004
          22108252
          f82ed4e8-c623-417f-9eb4-7ca3519ab86f
          © 2012

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article