Blog
About

16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants.

      Proceedings of the National Academy of Sciences of the United States of America

      microbiology, immunology, enzymology, drug effects, Tobacco, metabolism, Receptors, Pattern Recognition, Protein-Serine-Threonine Kinases, Protein Kinases, Protein Binding, pharmacology, Peptides, Molecular Sequence Data, Immunity, Innate, Flagellin, Arabidopsis Proteins, Arabidopsis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), plant cell surface receptors sense potential microbial pathogens by recognizing elicitors called PAMPs. Although diverse PAMPs trigger PTI through distinct receptors, the resulting intracellular responses overlap extensively. Despite this, a common component(s) linking signal perception with transduction remains unknown. In this study, we identify SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK)3/brassinosteroid-associated kinase (BAK)1, a receptor-like kinase previously implicated in hormone signaling, as a component of plant PTI. In Arabidopsis thaliana, AtSERK3/BAK1 rapidly enters an elicitor-dependent complex with FLAGELLIN SENSING 2 (FLS2), the receptor for the bacterial PAMP flagellin and its peptide derivative flg22. In the absence of AtSERK3/BAK1, early flg22-dependent responses are greatly reduced in both A. thaliana and Nicotiana benthamiana. Furthermore, N. benthamiana Serk3/Bak1 is required for full responses to unrelated PAMPs and, importantly, for restriction of bacterial and oomycete infections. Thus, SERK3/BAK1 appears to integrate diverse perception events into downstream PAMP responses, leading to immunity against a range of invading microbes.

          Related collections

          Author and article information

          Journal
          10.1073/pnas.0705306104
          1924592
          17626179

          Comments

          Comment on this article