14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Saccharomyces boulardii: What Makes It Tick as Successful Probiotic?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: found

          Probiotic Mechanisms of Action

          Probiotics are live microorganisms that provide health benefits to the host when ingested in adequate amounts. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria. Probiotics have demonstrated significant potential as therapeutic options for a variety of diseases, but the mechanisms responsible for these effects have not been fully elucidated yet. Several important mechanisms underlying the antagonistic effects of probiotics on various microorganisms include the following: modification of the gut microbiota, competitive adherence to the mucosa and epithelium, strengthening of the gut epithelial barrier and modulation of the immune system to convey an advantage to the host. Accumulating evidence demonstrates that probiotics communicate with the host by pattern recognition receptors, such as toll-like receptors and nucleotide-binding oligomerization domain-containing protein-like receptors, which modulate key signaling pathways, such as nuclear factor-ĸB and mitogen-activated protein kinase, to enhance or suppress activation and influence downstream pathways. This recognition is crucial for eliciting measured antimicrobial responses with minimal inflammatory tissue damage. A clear understanding of these mechanisms will allow for appropriate probiotic strain selection for specific applications and may uncover novel probiotic functions. The goal of this systematic review was to explore probiotic modes of action focusing on how gut microbes influence the host.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota.

            The gut microbiota is a complex and densely populated community in a dynamic environment determined by host physiology. We investigated how intestinal oxygen levels affect the composition of the fecal and mucosally adherent microbiota. We used the phosphorescence quenching method and a specially designed intraluminal oxygen probe to dynamically quantify gut luminal oxygen levels in mice. 16S ribosomal RNA gene sequencing was used to characterize the microbiota in intestines of mice exposed to hyperbaric oxygen, human rectal biopsy and mucosal swab samples, and paired human stool samples. Average Po2 values in the lumen of the cecum were extremely low (<1 mm Hg). In altering oxygenation of mouse intestines, we observed that oxygen diffused from intestinal tissue and established a radial gradient that extended from the tissue interface into the lumen. Increasing tissue oxygenation with hyperbaric oxygen altered the composition of the gut microbiota in mice. In human beings, 16S ribosomal RNA gene analyses showed an increased proportion of oxygen-tolerant organisms of the Proteobacteria and Actinobacteria phyla associated with rectal mucosa, compared with feces. A consortium of asaccharolytic bacteria of the Firmicute and Bacteroidetes phyla, which primarily metabolize peptones and amino acids, was associated primarily with mucus. This could be owing to the presence of proteinaceous substrates provided by mucus and the shedding of the intestinal epithelium. In an analysis of intestinal microbiota of mice and human beings, we observed a radial gradient of microbes linked to the distribution of oxygen and nutrients provided by host tissue. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118.

              The mechanisms by which probiotic strains enhance the health of the host remain largely uncharacterized. Here we demonstrate that Lactobacillus salivarius UCC118, a recently sequenced and genetically tractable probiotic strain of human origin, produces a bacteriocin in vivo that can significantly protect mice against infection with the invasive foodborne pathogen Listeria monocytogenes. A stable mutant of Lb. salivarius UCC118 that is unable to produce the Abp118 bacteriocin also failed to protect mice against infection with two strains of L. monocytogenes, EGDe and LO28, confirming that bacteriocin production is the primary mediator of protection against this organism. Furthermore, Lb. salivarius UCC118 did not offer any protection when mice were infected with a strain of L. monocytogenes expressing the cognate Abp118 immunity protein AbpIM, confirming that the antimicrobial effect is a result of direct antagonism between Lb. salivarius and the pathogen, mediated by the bacteriocin Abp118.
                Bookmark

                Author and article information

                Journal
                J Fungi (Basel)
                J Fungi (Basel)
                jof
                Journal of Fungi
                MDPI
                2309-608X
                04 June 2020
                June 2020
                : 6
                : 2
                : 78
                Affiliations
                [1 ]Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; pedrohpais@ 123456tecnico.ulisboa.pt (P.P.); vanda_pintalmeida@ 123456hotmail.com (V.A.); melikeyilmaz@ 123456tecnico.ulisboa.pt (M.Y.)
                [2 ]Biological Sciences Research Group, IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
                Author notes
                [* ]Correspondence: mnpct@ 123456tecnico.ulisboa.pt ; Tel.: +351-218417772
                [†]

                These authors contributed equally for this work.

                Author information
                https://orcid.org/0000-0001-5628-416X
                https://orcid.org/0000-0002-5676-6174
                Article
                jof-06-00078
                10.3390/jof6020078
                7344949
                32512834
                f83b5e49-e63f-4b23-93f4-3e99510b033c
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 May 2020
                : 02 June 2020
                Categories
                Review

                saccharomyces boulardii,saccharomyces cerevisiae,probiotics,gastrointestinal tract

                Comments

                Comment on this article