6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      UWB-GCN: Hardware Acceleration of Graph-Convolution-Network through Runtime Workload Rebalancing

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent development of deep learning has mostly been focusing on Euclidean data, such as images, videos, and audios. However, most real-world information and relationships are often expressed in graphs. Graph convolutional networks (GCNs) appear as a promising approach to efficiently learn from graph data structures, showing advantages in several practical applications such as social network analysis, knowledge discovery, 3D modeling, and motion capturing. However, practical graphs are often extremely large and unbalanced, posting significant performance demand and design challenges on the hardware dedicated to GCN inference. In this paper, we propose an architecture design called Ultra-Workload-Balanced-GCN (UWB-GCN) to accelerate graph convolutional network inference. To tackle the major performance bottleneck of workload imbalance, we propose two techniques: dynamic local sharing and dynamic remote switching, both of which rely on hardware flexibility to achieve performance auto-tuning with negligible area or delay overhead. Specifically, UWB-GCN is able to effectively profile the sparse graph pattern while continuously adjusting the workload distribution among parallel processing elements (PEs). After converging, the ideal configuration is reused for the remaining iterations. To the best of our knowledge, this is the first accelerator design targeted to GCNs and the first work that auto-tunes workload balance in accelerator at runtime through hardware, rather than software, approaches. Our methods can achieve near-ideal workload balance in processing sparse matrices. Experimental results show that UWB-GCN can finish the inference of the Nell graph (66K vertices, 266K edges) in 8.4ms, corresponding to 192x, 289x, and 7.3x respectively, compared to the CPU, GPU, and the baseline GCN design without workload rebalancing.

          Related collections

          Most cited references 11

          • Record: found
          • Abstract: found
          • Article: not found

          The graph neural network model.

          Many underlying relationships among data in several areas of science and engineering, e.g., computer vision, molecular chemistry, molecular biology, pattern recognition, and data mining, can be represented in terms of graphs. In this paper, we propose a new neural network model, called graph neural network (GNN) model, that extends existing neural network methods for processing the data represented in graph domains. This GNN model, which can directly process most of the practically useful types of graphs, e.g., acyclic, cyclic, directed, and undirected, implements a function tau(G,n) is an element of IR(m) that maps a graph G and one of its nodes n into an m-dimensional Euclidean space. A supervised learning algorithm is derived to estimate the parameters of the proposed GNN model. The computational cost of the proposed algorithm is also considered. Some experimental results are shown to validate the proposed learning algorithm, and to demonstrate its generalization capabilities.
            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            DaDianNao: A Machine-Learning Supercomputer

              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Graph Convolutional Neural Networks for Web-Scale Recommender Systems

                Bookmark

                Author and article information

                Journal
                23 August 2019
                Article
                1908.10834

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                cs.DC cs.LG

                Artificial intelligence, Networking & Internet architecture

                Comments

                Comment on this article