235
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Monocyte and macrophage heterogeneity

      ,
      Nature Reviews Immunology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Macrophage receptors and immune recognition.

          Macrophages express a broad range of plasma membrane receptors that mediate their interactions with natural and altered-self components of the host as well as a range of microorganisms. Recognition is followed by surface changes, uptake, signaling, and altered gene expression, contributing to homeostasis, host defense, innate effector mechanisms, and the induction of acquired immunity. This review covers recent studies of selected families of structurally defined molecules, studies that have improved understanding of ligand discrimination in the absence of opsonins and differential responses by macrophages and related myeloid cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection.

            Dendritic cells (DCs) present microbial antigens to T cells and provide inflammatory signals that modulate T cell differentiation. While the role of DCs in adaptive immunity is well established, their involvement in innate immune defenses is less well defined. We have identified a TNF/iNOS-producing (Tip)-DC subset in spleens of Listeria monocytogenes-infected mice that is absent from CCR2-deficient mice. The absence of Tip-DCs results in profound TNF and iNOS deficiencies and an inability to clear primary bacterial infection. CD8 and CD4 T cell responses to L. monocytogenes antigens are preserved in CCR2-deficient mice, indicating that Tip-DCs are not essential for T cell priming. Tip-DCs, as the predominant source of TNF and iNOS during L. monocytogenes infection, orchestrate and mediate innate immune defense against this intracellular bacterial pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene.

              Mice homozygous for the recessive mutation osteopetrosis (op) on chromosome 3 have a restricted capacity for bone remodelling, and are severely deficient in mature macrophages and osteoclasts. Both cell populations originate from a common haemopoietic progenitor. As op/op mice are not cured by transplants of normal bone marrow cells, the defects in op/op mice may be associated with an abnormal haematopoietic microenvironment rather than with an intrinsic defect in haematopoietic progenitors. To investigate the molecular and biochemical basis of the defects caused by the op mutation, we established primary fibroblast cell lines from op/op mice and tested the ability of these cell lines to support the proliferation of macrophage progenitors. We show that op/op fibroblasts are defective in production of functional macrophage colony-stimulating factor (M-CSF), although its messenger RNA (Csfm mRNA) is present at normal levels. This defect in M-CSF production and the recent mapping of the Csfm structural gene near op on chromosome 3 suggest that op is a mutation within the Csfm gene itself. We have sequenced Csfm complementary DNA prepared from op/op fibroblasts and found a single base pair insertion in the coding region of the Csfm gene that generates a stop codon 21 base pairs downstream. Thus, the op mutation is within the Csfm coding region and we conclude that the pathological changes in this mutant result from the absence of M-CSF.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Science and Business Media LLC
                1474-1733
                1474-1741
                December 2005
                December 2005
                : 5
                : 12
                : 953-964
                Article
                10.1038/nri1733
                16322748
                f84975cf-96c7-4b64-b8f2-bb19c4f6157f
                © 2005

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article