Effects of high-intensity ultrasonication on functional and structural properties of aqueous bovine serum albumin (BSA) solutions were investigated. The functional properties of BSA were altered by ultrasonication. Surface activity of BSA increased. Minimal changes were observed in the global structure of BSA but surface charge increased particularly at basic pH values (e.g. pH>9). While dynamic light scattering measurements indicated that the particle size increased up to 3.4 times after 90 min of sonication, no significant increase in the oligomeric state of BSA using blue native PAGE was observed. The amount of free sulfhydryl groups in BSA after 90 min of sonication decreased. The increased particle size and decreased number of free sylfhydryl groups may be attributed to formation of protein aggregates. Surface hydrophobicity increased and circular dichroism spectroscopy and FTIR analysis indicated changes in the secondary structure of BSA. We hypothesize that mechanical, thermal and chemical effects of ultrasonication resulted in structural changes in BSA that altered the functional properties of the macromolecule which may be attributed to the formation of an ultrasonically induced state that differs from a thermally, mechanically or solvent induced state.