38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk Stratification of Latent Tuberculosis Defined by Combined Interferon Gamma Release Assays

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Most individuals infected with Mycobacterium tuberculosis develop latent tuberculosis infection (LTBI). Some may progress to active disease and would benefit from preventive treatment yet no means currently exists to predict who will reactivate. Here, we provide an approach to stratify LTBI based on IFN-γ responses to two antigens, the recombinant Early-Secreted Antigen Target-6 (rESAT-6) and the latency antigen Heparin-Binding Haemagglutinin (HBHA).

          Methods

          We retrospectively analyzed results from in-house IFN-γ-release assays with HBHA (HBHA-IGRA) and rESAT-6 (rESAT-6-IGRA) performed during a 12-year period on serial blood samples (3 to 9) collected from 23 LTBI subjects in a low-TB incidence country. Both the kinetics of the absolute IFN-γ concentrations secreted in response to each antigen and the dynamics of HBHA/rESAT-6-induced IFN-γ concentrations ratios were examined.

          Results

          This analysis allowed the identification among the LTBI subjects of three major groups. Group A featured stable HBHA and rESAT-6-IGRA profiles with an HBHA/rESAT-6 ratio persistently higher than 1, and with high HBHA- and usually negative rESAT-6-IGRA responses throughout the study. Group B had changing HBHA/rESAT-6 ratios fluctuating from 0.0001 to 10,000, with both HBHA and rESAT-6 responses varying over time at least once during the follow-up. Group C was characterized by a progressive disappearance of all responses.

          Conclusions

          By combining the measures of IFN-γ concentrations secreted in response to an early and a latency antigens, LTBI subjects can be stratified into different risk groups. We propose that disappearing responses indicate cure, that persistent responses to HBHA with HBHA/rESAT-6 ratios ≥1 represent stable LTBI subjects, whereas subjects with ratios varying from >1 to <1 should be closely monitored as they may represent the highest-risk group, as illustrated by a case report, and should therefore be prioritized for preventive treatment.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update.

          Interferon-gamma-release assays (IGRAs) are alternatives to the tuberculin skin test (TST). A recent meta-analysis showed that IGRAs have high specificity, even among populations that have received bacille Calmette-Guérin (BCG) vaccination. Sensitivity was suboptimal for TST and IGRAs. To incorporate newly reported evidence from 20 studies into an updated meta-analysis on the sensitivity and specificity of IGRAs. PubMed was searched through 31 March 2008, and citations of all original articles, guidelines, and reviews for studies published in English were reviewed. Studies that evaluated QuantiFERON-TB Gold, QuantiFERON-TB Gold In-Tube (both from Cellestis, Victoria, Australia), and T-SPOT.TB (Oxford Immunotec, Oxford, United Kingdom) or its precommercial ELISpot version, when data on the commercial version were lacking. For assessing sensitivity, the study sample had to have microbiologically confirmed active tuberculosis. For assessing specificity, the sample had to comprise healthy, low-risk individuals without known exposure to tuberculosis. Studies with fewer than 10 participants and those that included only immunocompromised participants were excluded. One reviewer abstracted data on participant characteristics, test characteristics, and test performance from 38 studies; these data were double-checked by a second reviewer. The original investigators were contacted for additional information when necessary. A fixed-effects meta-analysis with correction for overdispersion was done to pool data within prespecified subgroups. The pooled sensitivity was 78% (95% CI, 73% to 82%) for QuantiFERON-TB Gold, 70% (CI, 63% to 78%) for QuantiFERON-TB Gold In-Tube, and 90% (CI, 86% to 93%) for T-SPOT.TB. The pooled specificity for both QuantiFERON tests was 99% among non-BCG-vaccinated participants (CI, 98% to 100%) and 96% (CI, 94% to 98%) among BCG-vaccinated participants. The pooled specificity of T-SPOT.TB (including its precommercial ELISpot version) was 93% (CI, 86% to 100%). Tuberculin skin test results were heterogeneous, but specificity in non-BCG-vaccinated participants was consistently high (97% [CI, 95% to 99%]). Most studies were small and had limitations, including no gold standard for diagnosing latent tuberculosis and variable TST methods and cutoff values. Data on the specificity of the commercial T-SPOT.TB assay were limited. The IGRAs, especially QuantiFERON-TB Gold and QuantiFERON-TB Gold In-Tube, have excellent specificity that is unaffected by BCG vaccination. Tuberculin skin test specificity is high in non-BCG-vaccinated populations but low and variable in BCG-vaccinated populations. Sensitivity of IGRAs and TST is not consistent across tests and populations, but T-SPOT.TB appears to be more sensitive than both QuantiFERON tests and TST.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The population dynamics and control of tuberculosis.

            More than 36 million patients have been successfully treated via the World Health Organization's strategy for tuberculosis (TB) control since 1995. Despite predictions of a decline in global incidence, the number of new cases continues to grow, approaching 10 million in 2010. Here we review the changing relationship between the causative agent, Mycobacterium tuberculosis, and its human host and examine a range of factors that could explain the persistence of TB. Although there are ways to reduce susceptibility to infection and disease, and a high-efficacy vaccine would boost TB prevention, early diagnosis and drug treatment to interrupt transmission remain the top priorities for control. Whatever the technology used, success depends critically on the social, institutional, and epidemiological context in which it is applied.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dominant TNF-α+ Mycobacterium tuberculosis-specific CD4+ T cell responses discriminate between latent infection and active disease.

              Rapid diagnosis of active Mycobacterium tuberculosis (Mtb) infection remains a clinical and laboratory challenge. We have analyzed the cytokine profile (interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2)) of Mtb-specific T cells by polychromatic flow cytometry. We studied Mtb-specific CD4+ T cell responses in subjects with latent Mtb infection and active tuberculosis disease. The results showed substantial increase in the proportion of single-positive TNF-α Mtb-specific CD4+ T cells in subjects with active disease, and this parameter was the strongest predictor of diagnosis of active disease versus latent infection. We validated the use of this parameter in a cohort of 101 subjects with tuberculosis diagnosis unknown to the investigator. The sensitivity and specificity of the flow cytometry-based assay were 67% and 92%, respectively, the positive predictive value was 80% and the negative predictive value was 92.4%. Therefore, the proportion of single-positive TNF-α Mtb-specific CD4+ T cells is a new tool for the rapid diagnosis of active tuberculosis disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                17 August 2012
                : 7
                : 8
                : e43285
                Affiliations
                [1 ]Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.) Brussels, Belgium
                [2 ]Department of Nephrology, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.) Brussels, Belgium
                [3 ]Immunodeficiency Unit, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.) Brussels, Belgium
                [4 ]INSERM, U1019, Lille, France
                [5 ]CNRS, UMR8204, Lille, France
                [6 ]Université de Lille Nord de France, Institut Pasteur de Lille, Lille, France
                [7 ]Center for Infection and Immunity of Lille, Lille, France
                [8 ]Department of Tuberculosis Immunology, Statens Serum Institute, Copenhagen, Denmark
                [9 ]Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
                University of Palermo, Italy
                Author notes

                Competing Interests: Co-author, T Mark Doherty, is an editor of PlosOne and currently employed by Glaxosmithkline. There are no patents, products in development or marketed products to declare. All other authors declare no further conflicts. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials.

                Conceived and designed the experiments: FM. Performed the experiments: VC GP KS VV. Analyzed the data: VC FM CL. Contributed reagents/materials/analysis tools: SL TMD. Wrote the paper: VC FM CL. In charge of the illustrating TB patient: FB KS.

                [¤]

                Current address: Glaxosmithkline, Nykær 68, Copenhagen, Denmark

                Article
                PONE-D-12-06489
                10.1371/journal.pone.0043285
                3422279
                22912846
                f864b718-c8ba-42ec-b02e-dc9612c1b3ea
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 February 2012
                : 23 July 2012
                Page count
                Pages: 10
                Funding
                This work is supported by the E.C. FP6 program TB-VAC (An integrated project for the design and testing of vaccine candidates against tuberculosis: identification, development, and clinical studies)(LSHP-CT-2003-503367), FP7 program NEWTB-VAC (Discovery and preclinical development of new generation tuberculosis vaccines)(HEALTH-2009-2.3.2–2), and the “Région de Bruxelles Capitale”. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Immune Physiology
                Cytokines
                Immunology
                Immune System
                Cytokines
                Microbiology
                Immunity
                Adaptive Immunity
                Medicine
                Clinical Immunology
                Immune Response
                Infectious Diseases
                Bacterial Diseases
                Mycobacterium
                Tuberculosis

                Uncategorized
                Uncategorized

                Comments

                Comment on this article