+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Changes in the gene expression profiles of the brains of male European eels ( Anguilla anguilla) during sexual maturation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males.


          Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity.


          This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-799) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          In silico prediction of protein-protein interactions in human macrophages

          Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
            • Record: found
            • Abstract: found
            • Article: not found

            Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors.

            Neuroactive steroids are potent modulators of gamma-aminobutyric acid type A receptors (GABAARs), and their behavioral effects are generally viewed in terms of altered inhibitory synaptic transmission. Here we report that, at concentrations known to occur in vivo, neuroactive steroids specifically enhance a tonic inhibitory conductance in central neurons that is mediated by extrasynaptic delta subunit-containing GABAARs. The neurosteroid-induced augmentation of this tonic conductance decreases neuronal excitability. Fluctuations in the circulating concentrations of endogenous neuroactive steroids have been implicated in the genesis of premenstrual syndrome, postpartum depression, and other anxiety disorders. Recognition that delta subunit-containing GABAARs responsible for a tonic conductance are a preferential target for neuroactive steroids may lead to novel pharmacological approaches for the treatment of these common conditions.
              • Record: found
              • Abstract: found
              • Article: not found

              The role of calmodulin as a signal integrator for synaptic plasticity.

              Excitatory synapses in the brain show several forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), which are initiated by increases in intracellular Ca(2+) that are generated through NMDA (N-methyl-D-aspartate) receptors or voltage-sensitive Ca(2+) channels. LTP depends on the coordinated regulation of an ensemble of enzymes, including Ca(2+)/calmodulin-dependent protein kinase II, adenylyl cyclase 1 and 8, and calcineurin, all of which are stimulated by calmodulin, a Ca(2+)-binding protein. In this review, we discuss the hypothesis that calmodulin is a central integrator of synaptic plasticity and that its unique regulatory properties allow the integration of several forms of signal transduction that are required for LTP and LTD.

                Author and article information

                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                17 September 2014
                17 September 2014
                : 15
                : 1
                [ ]CCMAR- Centre for Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
                [ ]Department of Bioscience, Aarhus University, Aarhus, 8000 Denmark
                [ ]Department of Comparative Biomedicine and Food Science, University of Padova, Viale dell’ Università 16, 35020 Legnaro, PD Italy
                [ ]Department of Biology, University of Padova, Via G. Colombo 3, 35131 Padova, PD Italy
                © Churcher et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Research Article
                Custom metadata
                © The Author(s) 2014


                eel, neuroendocrine, brain, gene expression, reproduction, microarray


                Comment on this article