24
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fertilization is an important agricultural practice for increasing crop yields and influencing soil properties. A field experiment was conducted in the period of 2006-2011 in southeastern China, to investigate the effects of fertilization regimes on tea (Camellia sinensis [L.] Kuntze) yields, soil chemical properties, and soil bacterial and fungal communities. The field experiment included six treatments: (1) unfertilized control (CON); (2) chemical fertilizers (NPK); (3) half-chemical fertilizers plus half-organic manure (1/2NPKOM); (4) organic manure fertilizers (OM); (5) half-chemical fertilizers plus half-organic manure plus legume stover returned (1/2NPKOM+L), and (6) chemical fertilizers plus legume stover returned (NPKL). Results showed that, compared to the control, NPK treatment showed no significant effect on soil organic matter (SOM), total N (TN), total P (TP), total K (TK), available N (AN), available K (AK) and tea yields, but showed the lowest bacterial Shannon index of 1.714 and the lowest value of 2.002 for fungal Shannon index. Organic manure treatment had the richest diversity of soil bacterial community with Shannon index of 2.542, and the highest levels of soil essential nutrients, including SOM (30.03%), TN (2.90 g kg-1), TP (1.35 g kg-1), AN (245.30 mg kg-1), AP (57.00 mg kg-1), and AK (271.80 mg kg-1), followed by 1/2NPKOM+L, which appeared the maximal tea yields of 6772 kg ha-1. Organic manure amendment was a key factor in determining soil properties and productivity. Base on soil quality and tea yields, both OM and 1/2NPKOM+L treatments were recommended as better choices of fertilization practices for tea soils in southeastern China. These findings provided a better understanding of the importance of fertilizations in promoting soil fertility, crop yields, and altering soil microbial diversity, leading to selection of scientific fertilization practices for sustainable development of agroecosystems.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          AN EXAMINATION OF THE DEGTJAREFF METHOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Soil fertility and biodiversity in organic farming.

            An understanding of agroecosystems is key to determining effective farming systems. Here we report results from a 21-year study of agronomic and ecological performance of biodynamic, bioorganic, and conventional farming systems in Central Europe. We found crop yields to be 20% lower in the organic systems, although input of fertilizer and energy was reduced by 34 to 53% and pesticide input by 97%. Enhanced soil fertility and higher biodiversity found in organic plots may render these systems less dependent on external inputs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA

              We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.
                Bookmark

                Author and article information

                Journal
                chiljar
                Chilean journal of agricultural research
                Chil. j. agric. res.
                Instituto de Investigaciones Agropecuarias, INIA (Chillán, , Chile )
                0718-5839
                September 2014
                : 74
                : 3
                : 333-339
                Affiliations
                [01] Fuzhou Fujian orgnameSoil and Fertilizer Institute orgdiv1Fujian Academy of Agricultural Sciences China
                Article
                S0718-58392014000300012 S0718-5839(14)07400300012
                10.4067/S0718-58392014000300012
                f86fe8fb-aa8b-4922-99f2-6f1e6c7d0c9e

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

                History
                : 26 October 2013
                : 09 June 2014
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 38, Pages: 7
                Product

                SciELO Chile

                Categories
                RESEARCH ARTICLES

                tea yields,Camellia sinensis,fertilization,soil chemical properties,soil microbial diversity,

                Comments

                Comment on this article