18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Epileptogenic Source Imaging Using Cross-Frequency Coupled Signals From Scalp EEG

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The epileptogenic zone (EZ) is a brain region containing the sources of seizure genesis. Removal of the EZ is associated with cessation of seizures after resective surgical procedures, as measured by Engel Class I score. This study describes a novel EEG (electroencephalography) source imaging (ESI) method which uses cross-frequency coupled potential signals (SCFC) derived from scalp EEG.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic predictions: oscillations and synchrony in top-down processing.

          Classical theories of sensory processing view the brain as a passive, stimulus-driven device. By contrast, more recent approaches emphasize the constructive nature of perception, viewing it as an active and highly selective process. Indeed, there is ample evidence that the processing of stimuli is controlled by top-down influences that strongly shape the intrinsic dynamics of thalamocortical networks and constantly create predictions about forthcoming sensory events. We discuss recent experiments indicating that such predictions might be embodied in the temporal structure of both stimulus-evoked and ongoing activity, and that synchronous oscillations are particularly important in this process. Coherence among subthreshold membrane potential fluctuations could be exploited to express selective functional relationships during states of expectancy or attention, and these dynamic patterns could allow the grouping and selection of distributed neuronal responses for further processing.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Rhythms of the Brain

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measuring phase-amplitude coupling between neuronal oscillations of different frequencies.

              Neuronal oscillations of different frequencies can interact in several ways. There has been particular interest in the modulation of the amplitude of high-frequency oscillations by the phase of low-frequency oscillations, since recent evidence suggests a functional role for this type of cross-frequency coupling (CFC). Phase-amplitude coupling has been reported in continuous electrophysiological signals obtained from the brain at both local and macroscopic levels. In the present work, we present a new measure for assessing phase-amplitude CFC. This measure is defined as an adaptation of the Kullback-Leibler distance-a function that is used to infer the distance between two distributions-and calculates how much an empirical amplitude distribution-like function over phase bins deviates from the uniform distribution. We show that a CFC measure defined this way is well suited for assessing the intensity of phase-amplitude coupling. We also review seven other CFC measures; we show that, by some performance benchmarks, our measure is especially attractive for this task. We also discuss some technical aspects related to the measure, such as the length of the epochs used for these analyses and the utility of surrogate control analyses. Finally, we apply the measure and a related CFC tool to actual hippocampal recordings obtained from freely moving rats and show, for the first time, that the CA3 and CA1 regions present different CFC characteristics.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Biomedical Engineering
                IEEE Trans. Biomed. Eng.
                Institute of Electrical and Electronics Engineers (IEEE)
                0018-9294
                1558-2531
                December 2016
                December 2016
                : 63
                : 12
                : 2607-2618
                Article
                10.1109/TBME.2016.2613936
                27875126
                f8796eb5-177b-45ae-a1e9-9cb4a57c8692
                © 2016
                History

                Comments

                Comment on this article