Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biocatalytic strategies for the asymmetric synthesis of profens – recent trends and developments

      , ,

      Green Chemistry

      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 79

          • Record: found
          • Abstract: not found
          • Article: not found

          Searching for green solvents

           Philip Jessop (2011)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents.

            Ionic liquids (ILs) have been extensively assessed in biotransformations with different purposes, for example, non-conventional (co-)solvents, performance additives, coating agents for immobilizing/stabilizing enzymes, and IL-membrane-based processes. Fuelled by their premature labelling as 'green solvents', academic research has flourished. However, in recent years environmental aspects related to ILs have been strongly addressed, stating that many ILs commonly used cannot be regarded as 'green derivatives'. Likewise, ILs costs are still a barrier for practical uses. Attempting to combine sustainability with the promising added-values of ILs, the third generation of ILs is currently under development. Likewise, deep-eutectic-solvents (DESs) appear in the horizon as an attractive and cost-effective option for using ionic solvents in biotransformations. DESs are often produced by gently warming and stirring two (bio-based and cheap) salts (e.g. choline chloride and urea). First successful uses of DES in biotransformations were reported recently. It may be expected that knowledge accumulated in (second generation) ILs and biotransformations could be turned into real applications by using these DESs, and third generation ILs, in the coming years. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metagenomics for mining new genetic resources of microbial communities.

              Recent progress has revealed that the capture of genetic resources of complex microbial communities in metagenome libraries allows the discovery of a richness of new enzymatic diversity that had not previously been imagined. Activity-based screening of such libraries has demonstrated that this new diversity is not simply variations on known sequence themes, but rather the existence of entirely new sequence classes and novel functionalities. This new diversity, the surface of which has thus far only been scratched, constitutes potential for a wealth of new and improved applications in industry, medicine, agriculture, etc., and promises to facilitate in a significant manner our transition to a sustainable society, by contributing to the transition to renewable sources of energy, chemicals and materials, the lowering of pollutant burdens, lower processes energies, etc. Current bottlenecks in metagenomics include insufficient functional characterization and amplifying non-validated annotations of proteins in databases. Copyright (c) 2008 S. Karger AG, Basel.
                Bookmark

                Author and article information

                Journal
                GRCHFJ
                Green Chemistry
                Green Chem.
                Royal Society of Chemistry (RSC)
                1463-9262
                1463-9270
                2011
                2011
                : 13
                : 10
                : 2607
                Article
                10.1039/c1gc15162b
                © 2011
                Product
                Self URI (article page): http://xlink.rsc.org/?DOI=c1gc15162b

                Comments

                Comment on this article