12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The neural oscillations of speech processing and language comprehension: state of the art and emerging mechanisms

      European Journal of Neuroscience

      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neural oscillations subserve a broad range of functions in speech processing and language comprehension. On the one hand, speech contains-somewhat-repetitive trains of air pressure bursts that occur at three dominant amplitude modulation frequencies, physically marking the linguistically meaningful progressions of phonemes, syllables and intonational phrase boundaries. To these acoustic events, neural oscillations of isomorphous operating frequencies are thought to synchronise, presumably resulting in an implicit temporal alignment of periods of neural excitability to linguistically meaningful spectral information on the three low-level linguistic description levels. On the other hand, speech is a carrier signal that codes for high-level linguistic meaning, such as syntactic structure and semantic information-which cannot be read from stimulus acoustics, but must be acquired during language acquisition and decoded for language comprehension. Neural oscillations subserve the processing of both syntactic structure and semantic information. Here, I synthesise a mapping from each linguistic processing domain to a unique set of subserving oscillatory mechanisms-the mapping is plausible given the role ascribed to different oscillatory mechanisms in different subfunctions of cortical information processing and faithful to the underlying electrophysiology. In sum, the present article provides an accessible and extensive review of the functional mechanisms that neural oscillations subserve in speech processing and language comprehension.

          Related collections

          Most cited references 137

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-band oscillations, attention, and controlled access to stored information

          Alpha-band oscillations are the dominant oscillations in the human brain and recent evidence suggests that they have an inhibitory function. Nonetheless, there is little doubt that alpha-band oscillations also play an active role in information processing. In this article, I suggest that alpha-band oscillations have two roles (inhibition and timing) that are closely linked to two fundamental functions of attention (suppression and selection), which enable controlled knowledge access and semantic orientation (the ability to be consciously oriented in time, space, and context). As such, alpha-band oscillations reflect one of the most basic cognitive processes and can also be shown to play a key role in the coalescence of brain activity in different frequencies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The θ-γ neural code.

            Theta and gamma frequency oscillations occur in the same brain regions and interact with each other, a process called cross-frequency coupling. Here, we review evidence for the following hypothesis: that the dual oscillations form a code for representing multiple items in an ordered way. This form of coding has been most clearly demonstrated in the hippocampus, where different spatial information is represented in different gamma subcycles of a theta cycle. Other experiments have tested the functional importance of oscillations and their coupling. These involve correlation of oscillatory properties with memory states, correlation with memory performance, and effects of disrupting oscillations on memory. Recent work suggests that this coding scheme coordinates communication between brain regions and is involved in sensory as well as memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Book: not found

              Rhythms of the Brain

                Bookmark

                Author and article information

                Journal
                European Journal of Neuroscience
                Eur J Neurosci
                Wiley
                0953816X
                November 14 2017
                :
                :
                Article
                10.1111/ejn.13748
                29055058
                f87b9ca6-b482-4b3b-8de9-85fde57dca08
                © 2017

                Comments

                Comment on this article