28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Supplemental Effects of Functional Oils on the Modulation of Mucosa-Associated Microbiota, Intestinal Health, and Growth Performance of Nursery Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          The earlier establishment of a health-benefiting intestinal microbiota can be an important strategy to improve intestinal health and subsequent growth performance. Functional oils, such as castor oil and cashew nutshell liquid, have been studied for promoting intestinal health due to their antimicrobial and anti-inflammatory properties. This study aimed to investigate the benefits of supplementation of functional oils on modulation of mucosa-associated microbiota, enhancing the intestinal health and growth performance of nursery pigs. It was demonstrated that the functional oils enhanced the intestinal health of the pigs by increasing beneficial and reducing harmful bacteria and by potentially reducing jejunal oxidative stress and enhancing intestinal morphology. Our results suggest that the blend composed of castor oil and cashew nutshell liquid can be used in nursery pigs to modulate the jejunal mucosa-associated microbiota and intestinal integrity of nursery pigs.

          Abstract

          This study aimed to investigate the effects of functional oils on modulation of mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Forty newly weaned pigs (20 barrows and 20 gilts) with 7.0 ± 0.5 kg body weight (BW) were housed individually and randomly allotted in a randomized complete block design with sex and initial BW as blocks. The dietary treatments were a basal diet with increasing levels (0.00, 0.50, 0.75, 1.00, and 1.50 g/kg feed) of functional oils (a blend of castor oil and cashew nutshell liquid; Oligo Basics USA LLC, Cary, NC) fed to pigs for 34 days divided in two phases (P1 for 13 days and P2 for 21 days). Growth performance was analyzed weekly. On day 34, all pigs were euthanized to collect jejunal mucosa for analyzing the mucosa-associated microbiota and intestinal health, and ileal digesta for analyzing apparent ileal digestibility. Data were analyzed using SAS 9.4. Supplementation of functional oils did not affect the overall growth performance. Increasing supplementation of functional oils reduced ( p < 0.05) the relative abundance of Helicobacteraceae, whereas it increased ( p < 0.05) Lactobacillus kitasatonis. Supplementation of functional oils tended ( p = 0.064) to decrease protein carbonyl and increase the villus height ( p = 0.098) and crypt depth ( p = 0.070). In conclusion, supplementation of functional oils enhanced intestinal health of nursery pigs by increasing beneficial and reducing harmful bacteria, potentially reducing oxidative stress and enhancing intestinal morphology, without affecting overall growth performance of pigs. Supplementation of functional oils at 0.75–1.50 g/kg feed was the most beneficial to the jejunal mucosa-associated microbiota and intestinal integrity of nursery pigs.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Mapping and quantifying mammalian transcriptomes by RNA-Seq.

          We have mapped and quantified mouse transcriptomes by deeply sequencing them and recording how frequently each gene is represented in the sequence sample (RNA-Seq). This provides a digital measure of the presence and prevalence of transcripts from known and previously unknown genes. We report reference measurements composed of 41-52 million mapped 25-base-pair reads for poly(A)-selected RNA from adult mouse brain, liver and skeletal muscle tissues. We used RNA standards to quantify transcript prevalence and to test the linear range of transcript detection, which spanned five orders of magnitude. Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3' untranscribed regions, as well as new candidate microRNA precursors. RNA splice events, which are not readily measured by standard gene expression microarray or serial analysis of gene expression methods, were detected directly by mapping splice-crossing sequence reads. We observed 1.45 x 10(5) distinct splices, and alternative splices were prominent, with 3,500 different genes expressing one or more alternate internal splices.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global trends in antimicrobial use in food animals.

            Demand for animal protein for human consumption is rising globally at an unprecedented rate. Modern animal production practices are associated with regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Despite the significant potential consequences for antimicrobial resistance, there has been no quantitative measurement of global antimicrobial consumption by livestock. We address this gap by using Bayesian statistical models combining maps of livestock densities, economic projections of demand for meat products, and current estimates of antimicrobial consumption in high-income countries to map antimicrobial use in food animals for 2010 and 2030. We estimate that the global average annual consumption of antimicrobials per kilogram of animal produced was 45 mg⋅kg(-1), 148 mg⋅kg(-1), and 172 mg⋅kg(-1) for cattle, chicken, and pigs, respectively. Starting from this baseline, we estimate that between 2010 and 2030, the global consumption of antimicrobials will increase by 67%, from 63,151 ± 1,560 tons to 105,596 ± 3,605 tons. Up to a third of the increase in consumption in livestock between 2010 and 2030 is imputable to shifting production practices in middle-income countries where extensive farming systems will be replaced by large-scale intensive farming operations that routinely use antimicrobials in subtherapeutic doses. For Brazil, Russia, India, China, and South Africa, the increase in antimicrobial consumption will be 99%, up to seven times the projected population growth in this group of countries. Better understanding of the consequences of the uninhibited growth in veterinary antimicrobial consumption is needed to assess its potential effects on animal and human health.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mitochondrial formation of reactive oxygen species.

              The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2-*). Even though O2-* is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                28 May 2021
                June 2021
                : 11
                : 6
                : 1591
                Affiliations
                Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA; vccardos@ 123456ncsu.edu (V.H.C.M.); mduarte@ 123456ncsu.edu (M.E.D.); snunesd@ 123456ncsu.edu (S.N.d.S.)
                Author notes
                [* ]Correspondence: sungwoo_kim@ 123456ncsu.edu
                Author information
                https://orcid.org/0000-0001-9288-0567
                https://orcid.org/0000-0003-0094-336X
                https://orcid.org/0000-0003-4591-1943
                Article
                animals-11-01591
                10.3390/ani11061591
                8230055
                34071448
                f883ea54-783a-4d29-becd-a541a6648ae8
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 30 April 2021
                : 27 May 2021
                Categories
                Article

                cashew nutshell liquid,castor oil,intestinal health,microbiota,nursery pigs,phytobiotics

                Comments

                Comment on this article