38
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Crystal structure of rat liver betaine homocysteine s-methyltransferase reveals new oligomerization features and conformational changes upon substrate binding.

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Betaine homocysteine S-methyltransferase (BHMT) is one of the two enzymes known to methylate homocysteine to generate methionine in the liver. It presents a Zn(2+) atom linked to three essential Cys residues. The crystal structure of rat liver BHMT has been solved at 2.5A resolution, using crystals with P2(1) symmetry and 45% solvent content in the cell. The asymmetric unit contains the whole functional tetramer showing point symmetry 222. The overall fold of the subunit consists mostly of a (alpha/beta)(8) barrel, as for human BHMT. From the end of the barrel, the polypeptide chain extends away and makes many interactions with a different subunit, forming tight dimers. The most remarkable structural feature of rat liver BHMT is the presence of a helix including residues 381-407, at the C terminus of the chain, which bind together the dimers AB to CD. A strong ion-pair and more than 60 hydrophobic interactions keep this helix stacked to the segment 316-349 from the opposite subunit. Moreover, the crystal structure of free rat liver BHMT clearly shows that Tyr160 is the fourth ligand coordinated to Zn, which is replaced by Hcy upon binding. Two residues essential for substrate recognition, Phe76 and Tyr77, are provided by a conformational change in a partially disordered loop (L2). The crucial role of these residues is highlighted by site-directed mutagenesis.

          Related collections

          Author and article information

          Journal
          J Mol Biol
          Journal of molecular biology
          Elsevier BV
          0022-2836
          0022-2836
          May 07 2004
          : 338
          : 4
          Affiliations
          [1 ] Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006 Madrid, Spain.
          Article
          S0022283604002773
          10.1016/j.jmb.2004.03.005
          15099744
          f886ce31-f8b2-453c-904a-cd6412451ddb
          History

          Comments

          Comment on this article

          Related Documents Log